dc-ml-emea-ar/main.py

1142 lines
41 KiB
Python

import os
import json
import pandas as pd
from glob import glob
from tqdm import tqdm
import time
import fitz
import re
from io import BytesIO
from traceback import print_exc
from utils.logger import logger
from utils.pdf_download import download_pdf_from_documents_warehouse
from utils.sql_query_util import query_document_fund_mapping
from utils.pdf_util import PDFUtil
from utils.biz_utils import add_slash_to_text_as_regex
from core.page_filter import FilterPages
from core.data_extraction import DataExtraction
from core.data_mapping import DataMapping
from core.metrics import Metrics
class EMEA_AR_Parsing:
def __init__(
self,
doc_id: str,
pdf_folder: str = r"/data/emea_ar/pdf/",
output_extract_data_folder: str = r"/data/emea_ar/output/extract_data/docs/",
output_mapping_data_folder: str = r"/data/emea_ar/output/mapping_data/docs/",
extract_way: str = "text",
drilldown_folder: str = r"/data/emea_ar/output/drilldown/",
) -> None:
self.doc_id = doc_id
self.pdf_folder = pdf_folder
os.makedirs(self.pdf_folder, exist_ok=True)
self.pdf_file = self.download_pdf()
self.document_mapping_info_df = query_document_fund_mapping(doc_id, rerun=False)
if extract_way is None or len(extract_way) == 0:
extract_way = "text"
self.extract_way = extract_way
self.output_extract_image_folder = None
if self.extract_way == "image":
self.output_extract_image_folder = (
r"/data/emea_ar/output/extract_data/images/"
)
os.makedirs(self.output_extract_image_folder, exist_ok=True)
if output_extract_data_folder is None or len(output_extract_data_folder) == 0:
output_extract_data_folder = r"/data/emea_ar/output/extract_data/docs/"
if not output_extract_data_folder.endswith("/"):
output_extract_data_folder = f"{output_extract_data_folder}/"
if extract_way is not None and len(extract_way) > 0:
output_extract_data_folder = (
f"{output_extract_data_folder}by_{extract_way}/"
)
self.output_extract_data_folder = output_extract_data_folder
os.makedirs(self.output_extract_data_folder, exist_ok=True)
if output_mapping_data_folder is None or len(output_mapping_data_folder) == 0:
output_mapping_data_folder = r"/data/emea_ar/output/mapping_data/docs/"
if not output_mapping_data_folder.endswith("/"):
output_mapping_data_folder = f"{output_mapping_data_folder}/"
if extract_way is not None and len(extract_way) > 0:
output_mapping_data_folder = (
f"{output_mapping_data_folder}by_{extract_way}/"
)
self.output_mapping_data_folder = output_mapping_data_folder
os.makedirs(self.output_mapping_data_folder, exist_ok=True)
self.filter_pages = FilterPages(
self.doc_id, self.pdf_file, self.document_mapping_info_df
)
self.page_text_dict = self.filter_pages.page_text_dict
self.datapoint_page_info, self.result_details = self.get_datapoint_page_info()
self.datapoints = self.get_datapoints_from_datapoint_page_info()
if drilldown_folder is None or len(drilldown_folder) == 0:
drilldown_folder = r"/data/emea_ar/output/drilldown/"
os.makedirs(drilldown_folder, exist_ok=True)
self.drilldown_folder = drilldown_folder
def download_pdf(self) -> str:
pdf_file = download_pdf_from_documents_warehouse(self.pdf_folder, self.doc_id)
return pdf_file
def get_datapoint_page_info(self) -> tuple:
datapoint_page_info, result_details = self.filter_pages.start_job()
return datapoint_page_info, result_details
def get_datapoints_from_datapoint_page_info(self) -> list:
datapoints = list(self.datapoint_page_info.keys())
if "doc_id" in datapoints:
datapoints.remove("doc_id")
return datapoints
def extract_data(
self,
re_run: bool = False,
) -> list:
found_data = False
if not re_run:
output_data_json_folder = os.path.join(
self.output_extract_data_folder, "json/"
)
os.makedirs(output_data_json_folder, exist_ok=True)
json_file = os.path.join(output_data_json_folder, f"{self.doc_id}.json")
if os.path.exists(json_file):
logger.info(
f"The document: {self.doc_id} has been parsed, loading data from {json_file}"
)
with open(json_file, "r", encoding="utf-8") as f:
data_from_gpt = json.load(f)
found_data = True
if not found_data:
try:
data_extraction = DataExtraction(
self.doc_id,
self.pdf_file,
self.output_extract_data_folder,
self.page_text_dict,
self.datapoint_page_info,
self.datapoints,
self.document_mapping_info_df,
extract_way=self.extract_way,
output_image_folder=self.output_extract_image_folder,
)
data_from_gpt = data_extraction.extract_data()
except Exception as e:
logger.error(f"Error: {e}")
data_from_gpt = {"data": []}
# Drilldown data to relevant PDF document
self.drilldown_pdf_document(data_from_gpt)
return data_from_gpt
def drilldown_pdf_document(self, data_from_gpt: list) -> list:
logger.info(f"Drilldown PDF document for doc_id: {self.doc_id}")
pdf_util = PDFUtil(self.pdf_file)
drilldown_data_list = []
for data in data_from_gpt:
page_index = data.get("page_index", -1)
if page_index == -1:
continue
extract_data_list = data.get("extract_data", {}).get("data", [])
dp_reported_name_dict = data.get("extract_data", {}).get("dp_reported_name", {})
highlighted_value_list = []
for extract_data in extract_data_list:
for data_point, value in extract_data.items():
if value in highlighted_value_list:
continue
if data_point in ["ter", "ogc", "performance_fee"]:
continue
drilldown_data = {
"page_index": page_index,
"data_point": data_point,
"parent_text_block": None,
"value": value,
"annotation_attribute": {}
}
drilldown_data_list.append(drilldown_data)
highlighted_value_list.append(value)
for data_point, reported_name in dp_reported_name_dict.items():
if reported_name in highlighted_value_list:
continue
data_point = f"{data_point}_reported_name"
drilldown_data = {
"page_index": page_index,
"data_point": data_point,
"parent_text_block": None,
"value": reported_name,
"annotation_attribute": {}
}
drilldown_data_list.append(drilldown_data)
highlighted_value_list.append(reported_name)
drilldown_result = pdf_util.batch_drilldown(drilldown_data_list=drilldown_data_list,
output_pdf_folder=self.drilldown_folder)
def mapping_data(self, data_from_gpt: list, re_run: bool = False) -> list:
if not re_run:
output_data_json_folder = os.path.join(
self.output_mapping_data_folder, "json/"
)
os.makedirs(output_data_json_folder, exist_ok=True)
json_file = os.path.join(output_data_json_folder, f"{self.doc_id}.json")
if os.path.exists(json_file):
logger.info(
f"The fund/ share of this document: {self.doc_id} has been mapped, loading data from {json_file}"
)
with open(json_file, "r", encoding="utf-8") as f:
doc_mapping_data = json.load(f)
return doc_mapping_data
"""
doc_id,
datapoints: list,
raw_document_data_list: list,
document_mapping_info_df: pd.DataFrame,
output_data_folder: str,
"""
data_mapping = DataMapping(
self.doc_id,
self.datapoints,
data_from_gpt,
self.document_mapping_info_df,
self.output_mapping_data_folder,
)
return data_mapping.mapping_raw_data()
def filter_pages(doc_id: str, pdf_folder: str) -> None:
logger.info(f"Filter EMEA AR PDF pages for doc_id: {doc_id}")
emea_ar_parsing = EMEA_AR_Parsing(doc_id, pdf_folder)
datapoint_page_info, result_details = emea_ar_parsing.get_datapoint_page_info()
return datapoint_page_info, result_details
def extract_data(
doc_id: str,
pdf_folder: str,
output_data_folder: str,
extract_way: str = "text",
re_run: bool = False,
) -> None:
logger.info(f"Extract EMEA AR data for doc_id: {doc_id}")
emea_ar_parsing = EMEA_AR_Parsing(
doc_id,
pdf_folder,
output_extract_data_folder=output_data_folder,
extract_way=extract_way,
)
data_from_gpt = emea_ar_parsing.extract_data(re_run)
return data_from_gpt
def mapping_data(
doc_id: str,
pdf_folder: str,
output_extract_data_folder: str,
output_mapping_folder: str,
extract_way: str = "text",
re_run_extract_data: bool = False,
re_run_mapping_data: bool = False,
) -> None:
logger.info(f"Extract EMEA AR data for doc_id: {doc_id}")
emea_ar_parsing = EMEA_AR_Parsing(
doc_id,
pdf_folder,
output_extract_data_folder=output_extract_data_folder,
output_mapping_data_folder=output_mapping_folder,
extract_way=extract_way,
)
doc_data_from_gpt = emea_ar_parsing.extract_data(re_run=re_run_extract_data)
doc_mapping_data = emea_ar_parsing.mapping_data(
data_from_gpt=doc_data_from_gpt, re_run=re_run_mapping_data
)
return doc_data_from_gpt, doc_mapping_data
def batch_extract_data(
pdf_folder: str,
doc_data_excel_file: str = None,
output_child_folder: str = r"/data/emea_ar/output/extract_data/docs/",
output_total_folder: str = r"/data/emea_ar/output/extract_data/total/",
extract_way: str = "text",
special_doc_id_list: list = None,
re_run: bool = False,
) -> None:
pdf_files = glob(pdf_folder + "*.pdf")
doc_list = []
if special_doc_id_list is not None and len(special_doc_id_list) > 0:
doc_list = special_doc_id_list
if (
len(doc_list) == 0
and doc_data_excel_file is not None
and len(doc_data_excel_file) > 0
and os.path.exists(doc_data_excel_file)
):
doc_data_df = pd.read_excel(doc_data_excel_file)
doc_data_df = doc_data_df[doc_data_df["Checked"] == 1]
doc_list = [str(doc_id) for doc_id in doc_data_df["doc_id"].tolist()]
result_list = []
for pdf_file in tqdm(pdf_files):
pdf_base_name = os.path.basename(pdf_file)
doc_id = pdf_base_name.split(".")[0]
if doc_list is not None and doc_id not in doc_list:
continue
data_from_gpt = extract_data(
doc_id=doc_id,
pdf_folder=pdf_folder,
output_data_folder=output_child_folder,
extract_way=extract_way,
re_run=re_run,
)
result_list.extend(data_from_gpt)
if special_doc_id_list is None or len(special_doc_id_list) == 0:
result_df = pd.DataFrame(result_list)
result_df.reset_index(drop=True, inplace=True)
logger.info(f"Saving the result to {output_total_folder}")
os.makedirs(output_total_folder, exist_ok=True)
time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
output_file = os.path.join(
output_total_folder,
f"extract_data_info_{len(pdf_files)}_documents_{time_stamp}.xlsx",
)
with pd.ExcelWriter(output_file) as writer:
result_df.to_excel(writer, index=False, sheet_name="extract_data_info")
def batch_start_job(
pdf_folder: str,
doc_data_excel_file: str = None,
output_extract_data_child_folder: str = r"/data/emea_ar/output/extract_data/docs/",
output_mapping_child_folder: str = r"/data/emea_ar/output/mapping_data/docs/",
output_extract_data_total_folder: str = r"/data/emea_ar/output/extract_data/total/",
output_mapping_total_folder: str = r"/data/emea_ar/output/mapping_data/total/",
extract_way: str = "text",
special_doc_id_list: list = None,
re_run_extract_data: bool = False,
re_run_mapping_data: bool = False,
force_save_total_data: bool = False,
calculate_metrics: bool = False,
):
pdf_files = glob(pdf_folder + "*.pdf")
doc_list = []
for pdf_file in tqdm(pdf_files):
pdf_base_name = os.path.basename(pdf_file)
doc_id = pdf_base_name.split(".")[0]
doc_list.append(doc_id)
if special_doc_id_list is not None and len(special_doc_id_list) > 0:
doc_list = special_doc_id_list
if (
len(doc_list) == 0
and doc_data_excel_file is not None
and len(doc_data_excel_file) > 0
and os.path.exists(doc_data_excel_file)
):
doc_data_df = pd.read_excel(doc_data_excel_file)
doc_data_df = doc_data_df[doc_data_df["Checked"] == 1]
doc_list = [str(doc_id) for doc_id in doc_data_df["doc_id"].tolist()]
result_extract_data_list = []
result_mapping_data_list = []
for doc_id in tqdm(doc_list):
doc_data_from_gpt, doc_mapping_data_list = mapping_data(
doc_id=doc_id,
pdf_folder=pdf_folder,
output_extract_data_folder=output_extract_data_child_folder,
output_mapping_folder=output_mapping_child_folder,
extract_way=extract_way,
re_run_extract_data=re_run_extract_data,
re_run_mapping_data=re_run_mapping_data,
)
result_extract_data_list.extend(doc_data_from_gpt)
result_mapping_data_list.extend(doc_mapping_data_list)
if force_save_total_data or (
special_doc_id_list is None or len(special_doc_id_list) == 0
):
result_extract_data_df = pd.DataFrame(result_extract_data_list)
result_extract_data_df.reset_index(drop=True, inplace=True)
result_mappingdata_df = pd.DataFrame(result_mapping_data_list)
result_mappingdata_df.reset_index(drop=True, inplace=True)
logger.info(f"Saving extract data to {output_extract_data_total_folder}")
unique_doc_ids = result_extract_data_df["doc_id"].unique().tolist()
os.makedirs(output_extract_data_total_folder, exist_ok=True)
time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
output_file = os.path.join(
output_extract_data_total_folder,
f"extract_data_info_{len(unique_doc_ids)}_documents_by_{extract_way}_{time_stamp}.xlsx",
)
with pd.ExcelWriter(output_file) as writer:
result_extract_data_df.to_excel(
writer, index=False, sheet_name="extract_data_info"
)
logger.info(f"Saving mapping data to {output_mapping_total_folder}")
unique_doc_ids = result_mappingdata_df["doc_id"].unique().tolist()
os.makedirs(output_mapping_total_folder, exist_ok=True)
time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
output_file = os.path.join(
output_mapping_total_folder,
f"mapping_data_info_{len(unique_doc_ids)}_documents_by_{extract_way}_{time_stamp}.xlsx",
)
doc_mapping_data_in_db = only_output_mapping_data_in_db(result_mappingdata_df)
with pd.ExcelWriter(output_file) as writer:
doc_mapping_data_in_db.to_excel(
writer, index=False, sheet_name="data_in_doc_mapping"
)
result_mappingdata_df.to_excel(
writer, index=False, sheet_name="total_mapping_data"
)
result_extract_data_df.to_excel(
writer, index=False, sheet_name="extract_data"
)
if calculate_metrics:
prediction_sheet_name = "total_mapping_data"
ground_truth_file = r"/data/emea_ar/ground_truth/data_extraction/mapping_data_info_73_documents.xlsx"
ground_truth_sheet_name = "mapping_data"
metrics_output_folder = r"/data/emea_ar/output/metrics/"
# logger.info(f"Calculating metrics for data extraction")
# missing_error_list, metrics_list, metrics_file = get_metrics(
# "data_extraction",
# output_file,
# prediction_sheet_name,
# ground_truth_file,
# ground_truth_sheet_name,
# metrics_output_folder,
# )
# logger.info(f"Calculating metrics for investment mapping by actual document mapping")
# missing_error_list, metrics_list, metrics_file = get_metrics(
# "investment_mapping",
# output_file,
# prediction_sheet_name,
# ground_truth_file,
# ground_truth_sheet_name,
# metrics_output_folder,
# )
logger.info(f"Calculating metrics for investment mapping by database document mapping")
missing_error_list, metrics_list, metrics_file = get_metrics(
"document_mapping_in_db",
output_file,
prediction_sheet_name,
ground_truth_file,
ground_truth_sheet_name,
metrics_output_folder,
)
def only_output_mapping_data_in_db(mapping_data: pd.DataFrame) -> None:
doc_id_list = mapping_data["doc_id"].unique().tolist()
data_in_mapping_df_list = []
for doc_id in doc_id_list:
doc_mapping_data = mapping_data[mapping_data["doc_id"] == doc_id]
document_mapping = query_document_fund_mapping(doc_id, rerun=False)
fund_id_list = document_mapping["FundId"].unique().tolist()
sec_id_list = document_mapping["SecId"].unique().tolist()
id_list = fund_id_list + sec_id_list
# filter doc_mapping_data by id_list or empty id
filter_doc_mapping_data = doc_mapping_data[(doc_mapping_data["investment_id"].isin(id_list)) | (doc_mapping_data["investment_id"] == "")]
data_in_mapping_df_list.append(filter_doc_mapping_data)
result_mapping_data_df = pd.concat(data_in_mapping_df_list)
result_mapping_data_df.reset_index(drop=True, inplace=True)
return result_mapping_data_df
def batch_filter_pdf_files(
pdf_folder: str,
doc_data_excel_file: str = None,
output_folder: str = r"/data/emea_ar/output/filter_pages/",
special_doc_id_list: list = None,
) -> None:
pdf_files = glob(pdf_folder + "*.pdf")
doc_list = []
if special_doc_id_list is not None and len(special_doc_id_list) > 0:
doc_list = special_doc_id_list
if (
len(doc_list) == 0
and doc_data_excel_file is not None
and len(doc_data_excel_file) > 0
and os.path.exists(doc_data_excel_file)
):
doc_data_df = pd.read_excel(doc_data_excel_file)
doc_data_df = doc_data_df[doc_data_df["Checked"] == 1]
doc_list = [str(doc_id) for doc_id in doc_data_df["doc_id"].tolist()]
result_list = []
result_details = []
for pdf_file in tqdm(pdf_files):
pdf_base_name = os.path.basename(pdf_file)
doc_id = pdf_base_name.split(".")[0]
if doc_list is not None and doc_id not in doc_list:
continue
doc_datapoint_page_info, doc_result_details = filter_pages(
doc_id=doc_id, pdf_folder=pdf_folder
)
result_list.append(doc_datapoint_page_info)
result_details.extend(doc_result_details)
result_df = pd.DataFrame(result_list)
result_df.reset_index(drop=True, inplace=True)
result_details_df = pd.DataFrame(result_details)
result_details_df.reset_index(drop=True, inplace=True)
logger.info(f"Saving the result to {output_folder}")
os.makedirs(output_folder, exist_ok=True)
time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
output_file = os.path.join(
output_folder,
f"datapoint_page_info_{len(result_df)}_documents_{time_stamp}.xlsx",
)
with pd.ExcelWriter(output_file) as writer:
result_df.to_excel(writer, index=False, sheet_name="dp_page_info")
result_details_df.to_excel(
writer, index=False, sheet_name="dp_page_info_details"
)
if len(special_doc_id_list) == 0:
logger.info(f"Calculating metrics for {output_file}")
metrics_output_folder = r"/data/emea_ar/output/metrics/"
missing_error_list, metrics_list, metrics_file = get_metrics(
data_type="page_filter",
prediction_file=output_file,
prediction_sheet_name="dp_page_info",
ground_truth_file=doc_data_excel_file,
output_folder=metrics_output_folder,
)
return missing_error_list, metrics_list, metrics_file
def get_metrics(
data_type: str,
prediction_file: str,
prediction_sheet_name: str,
ground_truth_file: str,
ground_truth_sheet_name: str = None,
output_folder: str = None,
) -> None:
metrics = Metrics(
data_type=data_type,
prediction_file=prediction_file,
prediction_sheet_name=prediction_sheet_name,
ground_truth_file=ground_truth_file,
ground_truth_sheet_name=ground_truth_sheet_name,
output_folder=output_folder,
)
missing_error_list, metrics_list, metrics_file = metrics.get_metrics(strict_model=False)
return missing_error_list, metrics_list, metrics_file
def test_auto_generate_instructions():
"""
doc_id: str,
pdf_file: str,
page_text_dict: dict,
datapoint_page_info: dict,
document_mapping_info_df: pd.DataFrame
"""
doc_id = "402397014"
pdf_file = f"/data/emea_ar/small_pdf/{doc_id}.pdf"
document_mapping_info_df = query_document_fund_mapping(doc_id, rerun=False)
filter_pages = FilterPages(doc_id, pdf_file, document_mapping_info_df)
page_text_dict = filter_pages.page_text_dict
datapoint_page_info, datapoint_page_info_details = filter_pages.start_job()
datapoint_list = list(datapoint_page_info.keys())
datapoint_list.remove("doc_id")
data_extraction = DataExtraction(
doc_id, pdf_file, page_text_dict, datapoint_page_info, document_mapping_info_df
)
page_index_list = list(page_text_dict.keys())
if len(page_index_list) > 0:
page_text = ""
for datapoint in datapoint_list:
if len(datapoint_page_info[datapoint]) > 0:
page_index_list = datapoint_page_info[datapoint]
page_text = page_text_dict[page_index_list[0]]
break
output_folder = (
r"/data/emea_ar/basic_information/prompts_example/generate_by_config/"
)
os.makedirs(output_folder, exist_ok=True)
tor_instructions_text = data_extraction.get_instructions_by_datapoints(
page_text, ["tor"]
)
with open(
os.path.join(output_folder, "tor_instructions.txt"), "w", encoding="utf-8"
) as f:
f.write(tor_instructions_text)
ter_instructions_text = data_extraction.get_instructions_by_datapoints(
page_text, ["ter"]
)
with open(
os.path.join(output_folder, "ter_instructions.txt"), "w", encoding="utf-8"
) as f:
f.write(ter_instructions_text)
ogc_instructions_text = data_extraction.get_instructions_by_datapoints(
page_text, ["ogc"]
)
with open(
os.path.join(output_folder, "ogc_instructions.txt"), "w", encoding="utf-8"
) as f:
f.write(ogc_instructions_text)
performance_fee_instructions_text = (
data_extraction.get_instructions_by_datapoints(
page_text, ["performance_fee"]
)
)
with open(
os.path.join(output_folder, "performance_fee_instructions.txt"),
"w",
encoding="utf-8",
) as f:
f.write(performance_fee_instructions_text)
ter_ogc_instructions_text = data_extraction.get_instructions_by_datapoints(
page_text, ["ter", "ogc"]
)
with open(
os.path.join(output_folder, "ter_ogc_instructions.txt"),
"w",
encoding="utf-8",
) as f:
f.write(ter_ogc_instructions_text)
ter_performance_fee_instructions_text = (
data_extraction.get_instructions_by_datapoints(
page_text, ["ter", "performance_fee"]
)
)
with open(
os.path.join(output_folder, "ter_performance_fee_instructions.txt"),
"w",
encoding="utf-8",
) as f:
f.write(ter_performance_fee_instructions_text)
ogc_ter_performance_fee_instructions_text = (
data_extraction.get_instructions_by_datapoints(
page_text, ["ogc", "ter", "performance_fee"]
)
)
with open(
os.path.join(output_folder, "ogc_ter_performance_fee_instructions.txt"),
"w",
encoding="utf-8",
) as f:
f.write(ogc_ter_performance_fee_instructions_text)
def test_data_extraction_metrics():
data_type = "data_extraction"
# prediction_file = r"/data/emea_ar/output/mapping_data/total/mapping_data_info_88_documents_by_image_20240920033929.xlsx"
prediction_file = r"/data/emea_ar/output/mapping_data/total/mapping_data_info_88_documents_by_text_20240922152517.xlsx"
# prediction_file = r"/data/emea_ar/output/mapping_data/docs/by_text/excel/481475385.xlsx"
prediction_sheet_name = "mapping_data"
ground_truth_file = r"/data/emea_ar/ground_truth/data_extraction/mapping_data_info_73_documents.xlsx"
ground_truth_sheet_name = "mapping_data"
metrics_output_folder = r"/data/emea_ar/output/metrics/"
missing_error_list, metrics_list, metrics_file = get_metrics(
data_type,
prediction_file,
prediction_sheet_name,
ground_truth_file,
ground_truth_sheet_name,
metrics_output_folder,
)
def test_mapping_raw_name():
doc_id = "337293427"
raw_name = "KBC BONDS CAPITAL FUND Institutional F Shares"
raw_share_name = "Institutional F Shares"
output_folder = r"/data/emea_ar/output/mapping_data/docs/by_text/"
data_mapping = DataMapping(
doc_id,
datapoints=None,
raw_document_data_list=None,
document_mapping_info_df=None,
output_data_folder=output_folder,
)
process_cache = {}
mapping_info = data_mapping.matching_with_database(
raw_name=raw_name,
raw_share_name=raw_share_name,
parent_id="FSGBR0536J",
matching_type="share",
process_cache=process_cache
)
print(mapping_info)
def test_translate_pdf():
from core.data_translate import Translate_PDF
pdf_file = r"/data/emea_ar/pdf/451063582.pdf"
output_folder = r"/data/translate/output/"
translate_pdf = Translate_PDF(pdf_file, output_folder)
translate_pdf.start_job()
def test_replace_abbrevation():
from utils.biz_utils import replace_abbrevation
text_list= ["M&G European Credit Investment Fund A CHFH Acc",
"M&G European Credit Investment Fund A CHFHInc",
"M&G European Credit Investment Fund A USDHAcc",
"M&G European High Yield Credit Investment Fund E GBPHedgedAcc",
"M&G Sustainable European Credit Investment Fd Cl L GBPH Acc",
"M&G Sustainable Total Return Credit Investment Fd AI HGBPInc",
"M&G Total Return Credit Investment Fund Class WI GBPHedgedInc",
"M&G Total Return Credit Investment Fund Class W GBP HedgedInc",
"M&G Total Return Credit Investment Fund Class P CHF H Acc",
"M&G Total Return Credit Investment Fund P EUR Inc"]
for text in text_list:
result = replace_abbrevation(text)
logger.info(f"Original text: {text}, replaced text: {result}")
if __name__ == "__main__":
# test_replace_abbrevation()
# test_translate_pdf()
pdf_folder = r"/data/emea_ar/pdf/"
page_filter_ground_truth_file = (
r"/data/emea_ar/ground_truth/page_filter/datapoint_page_info_88_documents.xlsx"
)
prediction_output_folder = r"/data/emea_ar/output/filter_pages/"
metrics_output_folder = r"/data/emea_ar/output/metrics/"
special_doc_id_list = []
# batch_filter_pdf_files(
# pdf_folder, page_filter_ground_truth_file, prediction_output_folder, special_doc_id_list
# )
# data_type = "page_filter"
# prediction_file = r"/data/emea_ar/output/filter_pages/datapoint_page_info_73_documents_20240903145002.xlsx"
# missing_error_list, metrics_list, metrics_file = get_metrics(
# data_type, prediction_file, page_filter_ground_truth_file, metrics_output_folder
# )
# test_auto_generate_instructions()
output_extract_data_child_folder = r"/data/emea_ar/output/extract_data/docs/"
output_extract_data_total_folder = r"/data/emea_ar/output/extract_data/total/"
# batch_extract_data(
# pdf_folder,
# page_filter_ground_truth_file,
# output_extract_data_child_folder,
# output_extract_data_total_folder,
# special_doc_id_list,
# re_run,
# )
# doc_id = "476492237"
# extract_way = "image"
# extract_data(doc_id,
# pdf_folder,
# output_extract_data_child_folder,
# extract_way,
# re_run_extract_data)
# special_doc_id_list = ["505174428", "510326848", "349679479"]
# check_mapping_doc_id_list = [
# "327956364",
# "391456740",
# "391736837",
# "458359181",
# "486383912",
# "497497599",
# "529925114",
# "321733631",
# "334718372",
# "344636875",
# "362246081",
# "445256897",
# "449623976",
# "458291624",
# "478585901",
# "492121213",
# "502821436",
# "507967525",
# "481475385",
# "508854243",
# "520879048",
# "402181770",
# "463081566",
# "502693599",
# "509845549",
# "389171486",
# "323390570",
# "366179419",
# "486378555",
# "506559375",
# "479793787",
# "471641628",
# ]
# English documents with ground truth
check_db_mapping_doc_id_list = [
"292989214",
"316237292",
"321733631",
"323390570",
"327956364",
"332223498",
"333207452",
"334718372",
"344636875",
"362246081",
"366179419",
"380945052",
"382366116",
"387202452",
"389171486",
"391456740",
"391736837",
"394778487",
"401684600",
"402113224",
"402181770",
"402397014",
"405803396",
"445102363",
"445256897",
"448265376",
"449555622",
"449623976",
"458291624",
"458359181",
"463081566",
"469138353",
"471641628",
"476492237",
"478585901",
"478586066",
"479042264",
"479042269",
"479793787",
"481475385",
"483617247",
"486378555",
"486383912",
"492121213",
"497497599",
"502693599"
]
# Sample documents with special cases
# check_db_mapping_doc_id_list = [
# "334584772",
# "406913630",
# "407275419",
# "337937633",
# "337293427",
# "334584772",
# "404712928",
# "451063582",
# "451878128",
# "425595958",
# "536344026",
# "532422548",
# "423418540",
# "423418395",
# "532998065",
# "540307575",
# "423395975",
# "508704368",
# "481482392",
# "466580448",
# "423365707",
# "423364758",
# "422761666",
# "422760156",
# "422760148",
# "422686965",
# "492029971",
# "510300817",
# "512745032",
# "514213638",
# "527525440",
# "534535767"
# ]
# Documents in EMEA Case 1.docx
check_db_mapping_doc_id_list = [
"424976833",
"425480144",
"427637151",
"429564034",
"429950833",
"430240853",
"431073795",
"434710819",
"434851173",
"434902020",
"434924914",
"435128656",
"440029306",
"466371135",
"466528487",
"466859621",
"466860852",
"467595142",
"467788879",
"470515549"
]
# documents in New EMEA Documents sample.xlsx as typical documents
# """
# Below 9 documents can't get data by keywords or ChatGPT
# 526747539,
# 534112077,
# 535798742,
# 536299372,
# 539566148,
# 541343431,
# 541923319,
# 543243585,
# 543243654
# """
# check_db_mapping_doc_id_list = [
# "511052670",
# "520733219",
# "524306810",
# "526747539",
# "528783089",
# "532422720",
# "532438210",
# "534112077",
# "534538571",
# "534538682",
# "535798742",
# "536299372",
# "539566148",
# "539604165",
# "540056900",
# "541343431",
# "541669780",
# "541669996",
# "541670397",
# "541923319",
# "542335994",
# "543243585",
# "543243654",
# "543244170",
# "543519140",
# "543519615",
# "543628379",
# "543809340",
# "543944737"
# ]
# documents in Final list of EMEA documents.xlsx as typical documents
check_db_mapping_doc_id_list = [
"532500349",
"535324239",
"532442891",
"543243650",
"528588598",
"532437639",
"527525440",
"534987291",
"534112055",
"533482585",
"544208174",
"534547266",
"544713166",
"526463547",
"534535569",
"534106067",
"532486560",
"532781760",
"533727067",
"527256381",
"533392425",
"532179676",
"534300608",
"539233950",
# "533727908",
"532438414",
"533681744",
"537654645",
"533594905",
"537926443",
"533499655",
"533862814",
"544918611",
"539087870",
"536343790"
]
# document samples 2024-11-06
# check_db_mapping_doc_id_list = ["546483469",
# "546375582",
# "546375575",
# "546375576",
# "546375577",
# "546375568",
# "546371033",
# "546632761",
# "546632544",
# "546632464",
# "546724583",
# "546724552",
# "546694677",
# "546660422",
# "546638908",
# "546632845",
# "546105299",
# "546085481",
# "546078693",
# "546078650",
# "546289930",
# "546289910",
# "542967371",
# "542798238",
# "546048730",
# "546048143",
# "546047619",
# "546047528",
# "546046730",
# "546919329"]
# document samples: 30 documents, all with 4 data points
check_db_mapping_doc_id_list = ["479742284",
"501380497",
"501380553",
"501380775",
"501380801",
"501600428",
"501600429",
"501600541",
"501600549",
"503659548",
"506326520",
"507720522",
"507928179",
"508981020",
"509133771",
"509743502",
"514636951",
"514636952",
"514636953",
"514636954",
"514636955",
"514636957",
"514636958",
"514636959",
"514636985",
"514636988",
"514636990",
"514636993",
"514636994",
"539794746",
]
special_doc_id_list = check_db_mapping_doc_id_list
special_doc_id_list = ["479742284",
"501380497",
"501380553",
"501380775",
"501380801",
"501600428",
"501600429",
"501600541",
"501600549",
"503659548",
"506326520",
"507720522",
"507928179",
"508981020",
"509133771",
"509743502",
"514636951",
"514636952",
"514636953",
"514636954",
"514636955",
"514636957",
"514636958",
"514636959",
"514636985",
"514636988",
"514636990",
"514636993",
"514636994",
"539794746",
"546483469",
"546375582",
"546375575",
"546375576",
"546375577",
"546375568",
"546371033",
"546632761",
"546632544",
"546632464",
"546724583",
"546724552",
"546694677",
"546660422",
"546638908",
"546632845",
"546105299",
"546085481",
"546078693",
"546078650",
"546289930",
"546289910",
"542967371",
"542798238",
"546048730",
"546048143",
"546047619",
"546047528",
"546046730",
"546919329"
]
# special_doc_id_list = ["501380775"]
output_mapping_child_folder = r"/data/emea_ar/output/mapping_data/docs/"
output_mapping_total_folder = r"/data/emea_ar/output/mapping_data/total/"
re_run_extract_data = False
re_run_mapping_data = False
force_save_total_data = False
calculate_metrics = False
extract_ways = ["text"]
# pdf_folder = r"/data/emea_ar/small_pdf/"
pdf_folder = r"/data/emea_ar/pdf/"
for extract_way in extract_ways:
batch_start_job(
pdf_folder,
page_filter_ground_truth_file,
output_extract_data_child_folder,
output_mapping_child_folder,
output_extract_data_total_folder,
output_mapping_total_folder,
extract_way,
special_doc_id_list,
re_run_extract_data,
re_run_mapping_data,
force_save_total_data=force_save_total_data,
calculate_metrics=calculate_metrics,
)
# test_data_extraction_metrics()
# test_mapping_raw_name()