# from transformers import GPT2TokenizerFast import tiktoken from openai import AzureOpenAI import openai import os from time import sleep import dotenv # loads .env file with your OPENAI_API_KEY dotenv.load_dotenv() # tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") tokenizer = tiktoken.get_encoding("cl100k_base") def get_embedding(text, engine=os.getenv("EMBEDDING_ENGINE")): count = 0 error = '' while count < 5: try: if count > 0: print(f'retrying the {count} time for getting text embedding...') return openai.Embedding.create(input=text, engine=engine)['data'][0]['embedding'] except Exception as e: error = str(e) print(error) count += 1 sleep(1) def num_tokens_from_string(string: str) -> int: """Returns the number of tokens in a text string.""" num_tokens = len(tokenizer.encode(string)) return num_tokens def num_tokens_from_messages(messages, model="gpt-35-turbo-16k"): """Returns the number of tokens used by a list of messages.""" encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-35-turbo-16k": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif model == "gpt-4-32k": tokens_per_message = 3 tokens_per_name = 1 else: tokens_per_message = 3 tokens_per_name = 1 num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def chat(prompt: str, engine = os.getenv("Engine_GPT4o"), azure_endpoint=os.getenv("OPENAI_API_BASE_GPT4o"), api_key=os.getenv("OPENAI_API_KEY_GPT4o"), api_version=os.getenv("OPENAI_API_VERSION_GPT4o"), temperature: float = 0.0): client = AzureOpenAI( azure_endpoint=azure_endpoint, api_key=api_key, api_version=api_version ) count = 0 error = '' max_tokens = 4000 request_timeout = 120 while count < 8: try: if count > 0: print(f'retrying the {count} time...') response = client.chat.completions.create( model=engine, temperature=temperature, max_tokens=max_tokens, top_p=0.95, frequency_penalty=0, presence_penalty=0, timeout=request_timeout, stop=None, messages=[ {"role": "user", "content": prompt} ] ) return response.choices[0].message.content, False except Exception as e: error = str(e) print(f"error message: {error}") if 'maximum context length' in error: return error, True count += 1 sleep(3) return error, True