1. optimize drilldown algorithm

2. support calculate drilldown recall metrics
This commit is contained in:
Blade He 2024-11-25 15:11:03 -06:00
parent 78fb283130
commit fb356fce76
3 changed files with 185 additions and 1 deletions

160
drilldown_practice.py Normal file
View File

@ -0,0 +1,160 @@
from tqdm import tqdm
from glob import glob
import json
import pandas as pd
import os
from traceback import print_exc
from sklearn.metrics import recall_score
from utils.logger import logger
from utils.pdf_util import PDFUtil
def drilldown_documents():
# doc_id: str,
pdf_folder = r"/data/emea_ar/pdf/"
drilldown_folder = r"/data/emea_ar/output/drilldown/"
extract_data_folder = r'/data/emea_ar/output/extract_data/docs/by_text/json/'
extract_files = glob(extract_data_folder + '*.json')
for index, json_file in enumerate(tqdm(extract_files)):
try:
# doc_id = file.split('/')[-1].split('.')[0]
json_base_name = os.path.basename(json_file)
doc_id = json_base_name.split('.')[0]
logger.info(f"Processing {doc_id}")
pdf_file = os.path.join(pdf_folder, f"{doc_id}.pdf")
if not os.path.exists(pdf_file):
logger.error(f"PDF file not found for {doc_id}")
continue
with open(json_file, "r", encoding="utf-8") as f:
data_from_gpt = json.load(f)
drilldown_pdf_document(doc_id=doc_id,
pdf_file=pdf_file,
drilldown_folder=drilldown_folder,
data_from_gpt=data_from_gpt)
except Exception as e:
print_exc()
logger.error(f"Error in processing {doc_id}: {e}")
def drilldown_pdf_document(doc_id:str,
pdf_file: str,
drilldown_folder: str,
data_from_gpt: list) -> list:
logger.info(f"Drilldown PDF document for doc_id: {doc_id}")
pdf_util = PDFUtil(pdf_file)
drilldown_data_list = []
for data in data_from_gpt:
doc_id = str(data.get("doc_id", ""))
# if doc_id != "506326520":
# continue
page_index = data.get("page_index", -1)
if page_index == -1:
continue
extract_data_list = data.get("extract_data", {}).get("data", [])
dp_reported_name_dict = data.get("extract_data", {}).get("dp_reported_name", {})
if len(dp_reported_name_dict.keys()) == 0:
continue
highlighted_value_list = []
for extract_data in extract_data_list:
for data_point, value in extract_data.items():
if value in highlighted_value_list:
continue
if data_point in ["ter", "ogc", "performance_fee"]:
continue
drilldown_data = {
"doc_id": doc_id,
"page_index": page_index,
"data_point": data_point,
"parent_text_block": None,
"value": value,
"annotation_attribute": {}
}
drilldown_data_list.append(drilldown_data)
highlighted_value_list.append(value)
for data_point, reported_name in dp_reported_name_dict.items():
if reported_name in highlighted_value_list:
continue
data_point = f"{data_point}_reported_name"
drilldown_data = {
"doc_id": doc_id,
"page_index": page_index,
"data_point": data_point,
"parent_text_block": None,
"value": reported_name,
"annotation_attribute": {}
}
drilldown_data_list.append(drilldown_data)
highlighted_value_list.append(reported_name)
drilldown_result = []
if len(drilldown_data_list) > 0:
drilldown_result = pdf_util.batch_drilldown(drilldown_data_list=drilldown_data_list,
output_pdf_folder=drilldown_folder)
if len(drilldown_result) > 0:
logger.info(f"Drilldown PDF document for doc_id: {doc_id} successfully")
annotation_list = drilldown_result.get("annotation_list", [])
for annotation in annotation_list:
annotation["doc_id"] = doc_id
if drilldown_folder is not None and len(drilldown_folder) > 0:
drilldown_data_folder = os.path.join(drilldown_folder, "data/")
os.makedirs(drilldown_data_folder, exist_ok=True)
drilldown_file = os.path.join(drilldown_data_folder, f"{doc_id}_drilldown.xlsx")
drilldown_source_df = pd.DataFrame(drilldown_data_list)
annotation_list_df = pd.DataFrame(annotation_list)
# set drilldown_result_df column order as doc_id, pdf_file, page_index,
# data_point, value, matching_val_area, normalized_bbox
annotation_list_df = annotation_list_df[["doc_id", "pdf_file", "page_index",
"data_point", "value", "matching_val_area", "normalized_bbox"]]
logger.info(f"Writing drilldown data to {drilldown_file}")
with pd.ExcelWriter(drilldown_file) as writer:
drilldown_source_df.to_excel(writer, index=False, sheet_name="source_data")
annotation_list_df.to_excel(writer, index=False, sheet_name="drilldown_data")
def calculate_metrics():
drilldown_folder = r"/data/emea_ar/output/drilldown/"
drilldown_data_folder = os.path.join(drilldown_folder, "data/")
drilldown_files = glob(drilldown_data_folder + '*.xlsx')
y_true_list = []
y_pred_list = []
series_list = []
for drilldown_file in drilldown_files:
drilldown_file_base_name = os.path.basename(drilldown_file)
if drilldown_file_base_name.startswith("~"):
continue
drilldown_data = pd.read_excel(drilldown_file, sheet_name="drilldown_data")
for index, row in drilldown_data.iterrows():
matching_val_area = row["matching_val_area"]
# transform matching_val_area to list
if isinstance(matching_val_area, str):
matching_val_area = eval(matching_val_area)
y_true_list.append(1)
if len(matching_val_area) > 0:
y_pred_list.append(1)
else:
y_pred_list.append(0)
series_list.append(row)
recall = recall_score(y_true_list, y_pred_list)
logger.info(f"Recall: {recall}, Support: {len(y_true_list)}")
no_annotation_df = pd.DataFrame(series_list)
no_annotation_df.reset_index(drop=True, inplace=True)
metrics_folder = os.path.join(drilldown_folder, "metrics/")
os.makedirs(metrics_folder, exist_ok=True)
metrics_file = os.path.join(metrics_folder, "metrics.xlsx")
metrics_result = {
"recall": recall,
"support": len(y_true_list)
}
metrics_df = pd.DataFrame([metrics_result])
with pd.ExcelWriter(metrics_file) as writer:
metrics_df.to_excel(writer, index=False, sheet_name="metrics")
no_annotation_df.to_excel(writer, index=False, sheet_name="no_annotation")
if __name__ == "__main__":
drilldown_documents()
calculate_metrics()

22
main.py
View File

@ -139,6 +139,7 @@ class EMEA_AR_Parsing:
pdf_util = PDFUtil(self.pdf_file) pdf_util = PDFUtil(self.pdf_file)
drilldown_data_list = [] drilldown_data_list = []
for data in data_from_gpt: for data in data_from_gpt:
doc_id = str(data.get("doc_id", ""))
page_index = data.get("page_index", -1) page_index = data.get("page_index", -1)
if page_index == -1: if page_index == -1:
continue continue
@ -152,6 +153,7 @@ class EMEA_AR_Parsing:
if data_point in ["ter", "ogc", "performance_fee"]: if data_point in ["ter", "ogc", "performance_fee"]:
continue continue
drilldown_data = { drilldown_data = {
"doc_id": doc_id,
"page_index": page_index, "page_index": page_index,
"data_point": data_point, "data_point": data_point,
"parent_text_block": None, "parent_text_block": None,
@ -166,6 +168,7 @@ class EMEA_AR_Parsing:
continue continue
data_point = f"{data_point}_reported_name" data_point = f"{data_point}_reported_name"
drilldown_data = { drilldown_data = {
"doc_id": doc_id,
"page_index": page_index, "page_index": page_index,
"data_point": data_point, "data_point": data_point,
"parent_text_block": None, "parent_text_block": None,
@ -177,6 +180,25 @@ class EMEA_AR_Parsing:
drilldown_result = pdf_util.batch_drilldown(drilldown_data_list=drilldown_data_list, drilldown_result = pdf_util.batch_drilldown(drilldown_data_list=drilldown_data_list,
output_pdf_folder=self.drilldown_folder) output_pdf_folder=self.drilldown_folder)
if len(drilldown_result) > 0:
logger.info(f"Drilldown PDF document for doc_id: {self.doc_id} successfully")
for drilldown_data in drilldown_result:
drilldown_data["doc_id"] = self.doc_id
if self.drilldown_folder is not None and len(self.drilldown_folder) > 0:
drilldown_data_folder = os.path.join(self.drilldown_folder, "data/")
os.makedirs(drilldown_data_folder, exist_ok=True)
drilldown_file = os.path.join(drilldown_data_folder, f"{self.doc_id}_drilldown.xlsx")
drilldown_source_df = pd.DataFrame(drilldown_data_list)
drilldown_result_df = pd.DataFrame(drilldown_result)
# set drilldown_result_df column order as doc_id, pdf_file, page_index,
# data_point, value, matching_val_area, normalized_bbox
drilldown_result_df = drilldown_result_df[["doc_id", "pdf_file", "page_index",
"data_point", "value", "matching_val_area", "normalized_bbox"]]
with pd.ExcelWriter(drilldown_file) as writer:
drilldown_source_df.to_excel(writer, index=False, sheet_name="source_data")
drilldown_result_df.to_excel(writer, index=False, sheet_name="drilldown_data")
def mapping_data(self, data_from_gpt: list, re_run: bool = False) -> list: def mapping_data(self, data_from_gpt: list, re_run: bool = False) -> list:
if not re_run: if not re_run:

View File

@ -430,6 +430,8 @@ class PDFUtil:
# order bbox_list by y0, x0, y1, x1 # order bbox_list by y0, x0, y1, x1
bbox_list = sorted(bbox_list, key=lambda x: (x[1], x[0], x[3], x[2])) bbox_list = sorted(bbox_list, key=lambda x: (x[1], x[0], x[3], x[2]))
annotation_data["matching_val_area"] = bbox_list annotation_data["matching_val_area"] = bbox_list
if len(bbox_list) > 0:
annotation_data["normalized_bbox"] = self.get_bbox_normalized(page, bbox_list)
return annotation_data return annotation_data
def get_proper_search_text(self, raw_value: str, highlight_value_regex: str, page_text: str, ignore_case: bool = True): def get_proper_search_text(self, raw_value: str, highlight_value_regex: str, page_text: str, ignore_case: bool = True):
@ -543,7 +545,7 @@ class PDFUtil:
end_index = start_index + len(pure_text_block) end_index = start_index + len(pure_text_block)
if end_index < len(text): if end_index < len(text):
next_char = text[end_index].strip() next_char = text[end_index].strip()
if next_char not in ["", " ", "%", ")"]: if next_char not in ["", " ", "%", ")", "0"]:
continue continue
new_matching_val_area.append(area) new_matching_val_area.append(area)
matching_val_area = new_matching_val_area matching_val_area = new_matching_val_area