support chat with image by ChatGPT4o

This commit is contained in:
Blade He 2024-08-26 11:19:07 -05:00
parent 6519dc23d4
commit 843f588015
4 changed files with 197 additions and 31 deletions

View File

@ -0,0 +1,18 @@
Instructions:
Please read the image carefully.
Answer below questions:
1. Please find the table or tables in the image.
2. Output the table contents as markdown format, it's like:
|name|age|hobby|
|Annie|18|music|
The contents should be exactly precise as the image contents.
3. Please output the results as JSON format, the result member is with legal markdown table format, the example is:
{
"tables": ["
|name|age|hobby|
|Annie|18|music|
"]
}
4. Only output JSON with tables
Answer:

72
playground.py Normal file
View File

@ -0,0 +1,72 @@
import os
import json
import base64
import json_repair
from utils.pdf_util import PDFUtil
from utils.logger import logger
from utils.gpt_utils import chat
def get_base64_pdf_image_list(pdf_file: str,
pdf_page_index_list: list,
output_folder: str=None) -> dict:
if pdf_file is None or pdf_file == "" or not os.path.exists(pdf_file):
logger.error("pdf_file is not provided")
return None
pdf_util = PDFUtil(pdf_file)
if pdf_page_index_list is None or len(pdf_page_index_list) == 0:
pdf_page_index_list = list(range(pdf_util.get_page_count()))
if output_folder is not None and len(output_folder) > 0:
os.makedirs(output_folder, exist_ok=True)
pdf_image_info = pdf_util.extract_images(pdf_page_index_list=pdf_page_index_list,
output_folder=output_folder)
return pdf_image_info
def encode_image(image_path: str):
if image_path is None or len(image_path) == 0 or not os.path.exists(image_path):
return None
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def chat_with_image(pdf_file: str,
pdf_page_index_list: list,
image_folder: str,
gpt_folder: str):
if pdf_file is None or pdf_file == "" or not os.path.exists(pdf_file):
logger.error("pdf_file is not provided")
return None
pdf_image_info = get_base64_pdf_image_list(pdf_file, pdf_page_index_list, image_folder)
image_instructions_file = r'./instructions/table_extraction_image_prompts.txt'
with open(image_instructions_file, "r", encoding="utf-8") as file:
image_instructions = file.read()
os.makedirs(gpt_folder, exist_ok=True)
pdf_base_name = os.path.basename(pdf_file).replace(".pdf", "")
response_list = {}
for page_index, data in pdf_image_info.items():
logger.info(f"Processing image in page {page_index}")
image_file = data.get("img_file", None)
image_base64 = data.get("img_base64", None)
response, error = chat(prompt=image_instructions, image_base64=image_base64)
if error:
logger.error(f"Error in processing image in page {page_index}")
continue
try:
response_json = json.loads(response)
except:
response_json = json_repair.loads(response)
response_json_file = os.path.join(gpt_folder, f"{pdf_base_name}_{page_index}.json")
with open(response_json_file, "w", encoding="utf-8") as file:
json.dump(response_json, file, indent=4)
logger.info(f"Response for image in page {page_index}: {response}")
logger.info("Done")
if __name__ == "__main__":
pdf_file = r"/data/emea_ar/small_pdf/382366116.pdf"
pdf_page_index_list = [29, 35, 71, 77, 83, 89, 97, 103, 112, 121, 130, 140, 195, 250, 305]
image_output_folder = r"/data/emea_ar/small_pdf_image/"
gpt_output_folder = r"/data/emea_ar/output/gpt_image_response/"
chat_with_image(pdf_file, pdf_page_index_list, image_output_folder, gpt_output_folder)

View File

@ -4,20 +4,26 @@ from openai import AzureOpenAI
import openai
import os
from time import sleep
import base64
import dotenv
# loads .env file with your OPENAI_API_KEY
dotenv.load_dotenv()
# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
tokenizer = tiktoken.get_encoding("cl100k_base")
def get_embedding(text, engine=os.getenv("EMBEDDING_ENGINE")):
count = 0
error = ''
error = ""
while count < 5:
try:
if count > 0:
print(f'retrying the {count} time for getting text embedding...')
return openai.Embedding.create(input=text, engine=engine)['data'][0]['embedding']
print(f"retrying the {count} time for getting text embedding...")
return openai.Embedding.create(input=text, engine=engine)["data"][0][
"embedding"
]
except Exception as e:
error = str(e)
print(error)
@ -35,7 +41,9 @@ def num_tokens_from_messages(messages, model="gpt-35-turbo-16k"):
"""Returns the number of tokens used by a list of messages."""
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-35-turbo-16k":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_message = (
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
)
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-32k":
tokens_per_message = 3
@ -54,45 +62,77 @@ def num_tokens_from_messages(messages, model="gpt-35-turbo-16k"):
return num_tokens
def chat(prompt: str,
engine = os.getenv("Engine_GPT4o"),
azure_endpoint=os.getenv("OPENAI_API_BASE_GPT4o"),
api_key=os.getenv("OPENAI_API_KEY_GPT4o"),
api_version=os.getenv("OPENAI_API_VERSION_GPT4o"),
temperature: float = 0.0):
def chat(
prompt: str,
engine=os.getenv("Engine_GPT4o"),
azure_endpoint=os.getenv("OPENAI_API_BASE_GPT4o"),
api_key=os.getenv("OPENAI_API_KEY_GPT4o"),
api_version=os.getenv("OPENAI_API_VERSION_GPT4o"),
temperature: float = 0.0,
image_file: str = None,
image_base64: str = None,
):
client = AzureOpenAI(
azure_endpoint=azure_endpoint,
api_key=api_key,
api_version=api_version
azure_endpoint=azure_endpoint, api_key=api_key, api_version=api_version
)
if (
image_base64 is None
and image_file is not None
and len(image_file) > 0
and os.path.exists(image_file)
):
image_base64 = encode_image(image_file)
if image_base64 is not None and len(image_base64) > 0:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
},
],
}
]
else:
messages = [{"role": "user", "content": prompt}]
count = 0
error = ''
error = ""
max_tokens = 4000
request_timeout = 120
while count < 8:
try:
if count > 0:
print(f'retrying the {count} time...')
response = client.chat.completions.create(
model=engine,
temperature=temperature,
max_tokens=max_tokens,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
timeout=request_timeout,
stop=None,
messages=[
{"role": "user", "content": prompt}
]
)
print(f"retrying the {count} time...")
response = client.chat.completions.create(
model=engine,
temperature=temperature,
max_tokens=max_tokens,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
timeout=request_timeout,
stop=None,
messages=messages,
response_format={"type": "json_object"},
)
return response.choices[0].message.content, False
except Exception as e:
error = str(e)
print(f"error message: {error}")
if 'maximum context length' in error:
if "maximum context length" in error:
return error, True
count += 1
sleep(3)
return error, True
return error, True
def encode_image(image_path: str):
if image_path is None or len(image_path) == 0 or not os.path.exists(image_path):
return None
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")

View File

@ -8,6 +8,7 @@ import fitz
import json
from traceback import print_exc
from tqdm import tqdm
import base64
from utils.similarity import Similarity
from utils.logger import logger
@ -110,7 +111,42 @@ class PDFUtil:
logger.error(f"Error extracting text: {e}")
print_exc()
return False, str(e), {}
def extract_images(self,
zoom:float = 2.0,
pdf_page_index_list: list = None,
output_folder: str = None):
try:
pdf_doc = fitz.open(self.pdf_file)
try:
pdf_encrypted = pdf_doc.isEncrypted
except:
pdf_encrypted = pdf_doc.is_encrypted
if pdf_encrypted:
pdf_doc.authenticate("")
if pdf_page_index_list is None or len(pdf_page_index_list) == 0:
pdf_page_index_list = range(pdf_doc.page_count)
pdf_base_name = os.path.basename(self.pdf_file).replace(".pdf", "")
mat = fitz.Matrix(zoom, zoom)
output_data = {}
for page_num in tqdm(pdf_page_index_list, disable=False):
page = pdf_doc[page_num]
pix = page.get_pixmap(matrix=mat)
img_buffer = pix.tobytes(output='png')
output_data[page_num] = {}
img_base64 = base64.b64encode(img_buffer).decode('utf-8')
if output_folder and len(output_folder) > 0:
os.makedirs(output_folder, exist_ok=True)
image_file = os.path.join(output_folder, f"{pdf_base_name}_{page_num}.png")
pix.save(image_file)
output_data[page_num]["img_file"] = image_file
output_data[page_num]["img_base64"] = img_base64
return output_data
except Exception as e:
logger.error(f"Error extracting images: {e}")
print_exc()
return {}
def parse_blocks_page(self, page: fitz.Page):
blocks = page.get_text("blocks")
list_of_blocks = []