support chat with image by ChatGPT4o
This commit is contained in:
parent
6519dc23d4
commit
843f588015
|
|
@ -0,0 +1,18 @@
|
|||
Instructions:
|
||||
Please read the image carefully.
|
||||
Answer below questions:
|
||||
1. Please find the table or tables in the image.
|
||||
2. Output the table contents as markdown format, it's like:
|
||||
|name|age|hobby|
|
||||
|Annie|18|music|
|
||||
The contents should be exactly precise as the image contents.
|
||||
3. Please output the results as JSON format, the result member is with legal markdown table format, the example is:
|
||||
{
|
||||
"tables": ["
|
||||
|name|age|hobby|
|
||||
|Annie|18|music|
|
||||
"]
|
||||
}
|
||||
4. Only output JSON with tables
|
||||
|
||||
Answer:
|
||||
|
|
@ -0,0 +1,72 @@
|
|||
import os
|
||||
import json
|
||||
import base64
|
||||
import json_repair
|
||||
from utils.pdf_util import PDFUtil
|
||||
from utils.logger import logger
|
||||
from utils.gpt_utils import chat
|
||||
|
||||
|
||||
|
||||
def get_base64_pdf_image_list(pdf_file: str,
|
||||
pdf_page_index_list: list,
|
||||
output_folder: str=None) -> dict:
|
||||
if pdf_file is None or pdf_file == "" or not os.path.exists(pdf_file):
|
||||
logger.error("pdf_file is not provided")
|
||||
return None
|
||||
pdf_util = PDFUtil(pdf_file)
|
||||
if pdf_page_index_list is None or len(pdf_page_index_list) == 0:
|
||||
pdf_page_index_list = list(range(pdf_util.get_page_count()))
|
||||
if output_folder is not None and len(output_folder) > 0:
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
pdf_image_info = pdf_util.extract_images(pdf_page_index_list=pdf_page_index_list,
|
||||
output_folder=output_folder)
|
||||
return pdf_image_info
|
||||
|
||||
|
||||
def encode_image(image_path: str):
|
||||
if image_path is None or len(image_path) == 0 or not os.path.exists(image_path):
|
||||
return None
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||
|
||||
|
||||
def chat_with_image(pdf_file: str,
|
||||
pdf_page_index_list: list,
|
||||
image_folder: str,
|
||||
gpt_folder: str):
|
||||
if pdf_file is None or pdf_file == "" or not os.path.exists(pdf_file):
|
||||
logger.error("pdf_file is not provided")
|
||||
return None
|
||||
pdf_image_info = get_base64_pdf_image_list(pdf_file, pdf_page_index_list, image_folder)
|
||||
image_instructions_file = r'./instructions/table_extraction_image_prompts.txt'
|
||||
with open(image_instructions_file, "r", encoding="utf-8") as file:
|
||||
image_instructions = file.read()
|
||||
os.makedirs(gpt_folder, exist_ok=True)
|
||||
pdf_base_name = os.path.basename(pdf_file).replace(".pdf", "")
|
||||
response_list = {}
|
||||
for page_index, data in pdf_image_info.items():
|
||||
logger.info(f"Processing image in page {page_index}")
|
||||
image_file = data.get("img_file", None)
|
||||
image_base64 = data.get("img_base64", None)
|
||||
response, error = chat(prompt=image_instructions, image_base64=image_base64)
|
||||
if error:
|
||||
logger.error(f"Error in processing image in page {page_index}")
|
||||
continue
|
||||
try:
|
||||
response_json = json.loads(response)
|
||||
except:
|
||||
response_json = json_repair.loads(response)
|
||||
response_json_file = os.path.join(gpt_folder, f"{pdf_base_name}_{page_index}.json")
|
||||
with open(response_json_file, "w", encoding="utf-8") as file:
|
||||
json.dump(response_json, file, indent=4)
|
||||
logger.info(f"Response for image in page {page_index}: {response}")
|
||||
logger.info("Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pdf_file = r"/data/emea_ar/small_pdf/382366116.pdf"
|
||||
pdf_page_index_list = [29, 35, 71, 77, 83, 89, 97, 103, 112, 121, 130, 140, 195, 250, 305]
|
||||
image_output_folder = r"/data/emea_ar/small_pdf_image/"
|
||||
gpt_output_folder = r"/data/emea_ar/output/gpt_image_response/"
|
||||
chat_with_image(pdf_file, pdf_page_index_list, image_output_folder, gpt_output_folder)
|
||||
|
|
@ -4,20 +4,26 @@ from openai import AzureOpenAI
|
|||
import openai
|
||||
import os
|
||||
from time import sleep
|
||||
import base64
|
||||
import dotenv
|
||||
|
||||
# loads .env file with your OPENAI_API_KEY
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
||||
tokenizer = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
|
||||
def get_embedding(text, engine=os.getenv("EMBEDDING_ENGINE")):
|
||||
count = 0
|
||||
error = ''
|
||||
error = ""
|
||||
while count < 5:
|
||||
try:
|
||||
if count > 0:
|
||||
print(f'retrying the {count} time for getting text embedding...')
|
||||
return openai.Embedding.create(input=text, engine=engine)['data'][0]['embedding']
|
||||
print(f"retrying the {count} time for getting text embedding...")
|
||||
return openai.Embedding.create(input=text, engine=engine)["data"][0][
|
||||
"embedding"
|
||||
]
|
||||
except Exception as e:
|
||||
error = str(e)
|
||||
print(error)
|
||||
|
|
@ -35,7 +41,9 @@ def num_tokens_from_messages(messages, model="gpt-35-turbo-16k"):
|
|||
"""Returns the number of tokens used by a list of messages."""
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
if model == "gpt-35-turbo-16k":
|
||||
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
|
||||
tokens_per_message = (
|
||||
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
|
||||
)
|
||||
tokens_per_name = -1 # if there's a name, the role is omitted
|
||||
elif model == "gpt-4-32k":
|
||||
tokens_per_message = 3
|
||||
|
|
@ -54,45 +62,77 @@ def num_tokens_from_messages(messages, model="gpt-35-turbo-16k"):
|
|||
return num_tokens
|
||||
|
||||
|
||||
def chat(prompt: str,
|
||||
engine = os.getenv("Engine_GPT4o"),
|
||||
azure_endpoint=os.getenv("OPENAI_API_BASE_GPT4o"),
|
||||
api_key=os.getenv("OPENAI_API_KEY_GPT4o"),
|
||||
api_version=os.getenv("OPENAI_API_VERSION_GPT4o"),
|
||||
temperature: float = 0.0):
|
||||
def chat(
|
||||
prompt: str,
|
||||
engine=os.getenv("Engine_GPT4o"),
|
||||
azure_endpoint=os.getenv("OPENAI_API_BASE_GPT4o"),
|
||||
api_key=os.getenv("OPENAI_API_KEY_GPT4o"),
|
||||
api_version=os.getenv("OPENAI_API_VERSION_GPT4o"),
|
||||
temperature: float = 0.0,
|
||||
image_file: str = None,
|
||||
image_base64: str = None,
|
||||
):
|
||||
client = AzureOpenAI(
|
||||
azure_endpoint=azure_endpoint,
|
||||
api_key=api_key,
|
||||
api_version=api_version
|
||||
azure_endpoint=azure_endpoint, api_key=api_key, api_version=api_version
|
||||
)
|
||||
|
||||
if (
|
||||
image_base64 is None
|
||||
and image_file is not None
|
||||
and len(image_file) > 0
|
||||
and os.path.exists(image_file)
|
||||
):
|
||||
image_base64 = encode_image(image_file)
|
||||
|
||||
if image_base64 is not None and len(image_base64) > 0:
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
else:
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
|
||||
count = 0
|
||||
error = ''
|
||||
error = ""
|
||||
max_tokens = 4000
|
||||
request_timeout = 120
|
||||
while count < 8:
|
||||
try:
|
||||
if count > 0:
|
||||
print(f'retrying the {count} time...')
|
||||
response = client.chat.completions.create(
|
||||
model=engine,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
top_p=0.95,
|
||||
frequency_penalty=0,
|
||||
presence_penalty=0,
|
||||
timeout=request_timeout,
|
||||
stop=None,
|
||||
messages=[
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
)
|
||||
print(f"retrying the {count} time...")
|
||||
response = client.chat.completions.create(
|
||||
model=engine,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
top_p=0.95,
|
||||
frequency_penalty=0,
|
||||
presence_penalty=0,
|
||||
timeout=request_timeout,
|
||||
stop=None,
|
||||
messages=messages,
|
||||
response_format={"type": "json_object"},
|
||||
)
|
||||
return response.choices[0].message.content, False
|
||||
except Exception as e:
|
||||
error = str(e)
|
||||
print(f"error message: {error}")
|
||||
if 'maximum context length' in error:
|
||||
if "maximum context length" in error:
|
||||
return error, True
|
||||
count += 1
|
||||
sleep(3)
|
||||
return error, True
|
||||
return error, True
|
||||
|
||||
|
||||
def encode_image(image_path: str):
|
||||
if image_path is None or len(image_path) == 0 or not os.path.exists(image_path):
|
||||
return None
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ import fitz
|
|||
import json
|
||||
from traceback import print_exc
|
||||
from tqdm import tqdm
|
||||
import base64
|
||||
from utils.similarity import Similarity
|
||||
|
||||
from utils.logger import logger
|
||||
|
|
@ -110,7 +111,42 @@ class PDFUtil:
|
|||
logger.error(f"Error extracting text: {e}")
|
||||
print_exc()
|
||||
return False, str(e), {}
|
||||
|
||||
|
||||
def extract_images(self,
|
||||
zoom:float = 2.0,
|
||||
pdf_page_index_list: list = None,
|
||||
output_folder: str = None):
|
||||
try:
|
||||
pdf_doc = fitz.open(self.pdf_file)
|
||||
try:
|
||||
pdf_encrypted = pdf_doc.isEncrypted
|
||||
except:
|
||||
pdf_encrypted = pdf_doc.is_encrypted
|
||||
if pdf_encrypted:
|
||||
pdf_doc.authenticate("")
|
||||
if pdf_page_index_list is None or len(pdf_page_index_list) == 0:
|
||||
pdf_page_index_list = range(pdf_doc.page_count)
|
||||
pdf_base_name = os.path.basename(self.pdf_file).replace(".pdf", "")
|
||||
mat = fitz.Matrix(zoom, zoom)
|
||||
output_data = {}
|
||||
for page_num in tqdm(pdf_page_index_list, disable=False):
|
||||
page = pdf_doc[page_num]
|
||||
pix = page.get_pixmap(matrix=mat)
|
||||
img_buffer = pix.tobytes(output='png')
|
||||
output_data[page_num] = {}
|
||||
img_base64 = base64.b64encode(img_buffer).decode('utf-8')
|
||||
if output_folder and len(output_folder) > 0:
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
image_file = os.path.join(output_folder, f"{pdf_base_name}_{page_num}.png")
|
||||
pix.save(image_file)
|
||||
output_data[page_num]["img_file"] = image_file
|
||||
output_data[page_num]["img_base64"] = img_base64
|
||||
return output_data
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting images: {e}")
|
||||
print_exc()
|
||||
return {}
|
||||
|
||||
def parse_blocks_page(self, page: fitz.Page):
|
||||
blocks = page.get_text("blocks")
|
||||
list_of_blocks = []
|
||||
|
|
|
|||
Loading…
Reference in New Issue