Merge branch 'aus_prospectus_ravi'

This commit is contained in:
Blade He 2025-01-27 12:32:42 -06:00
commit 6f831e241c
4 changed files with 1293 additions and 116 deletions

View File

@ -69,7 +69,8 @@ def emea_ar_data_extract():
output_extract_data_folder=output_extract_data_folder,
output_mapping_data_folder=output_mapping_data_folder,
extract_way=extract_way,
drilldown_folder=drilldown_folder)
drilldown_folder=drilldown_folder,
compare_with_provider=False)
doc_data_from_gpt, annotation_list = emea_ar_parsing.extract_data(re_run=re_run_extract_data)
doc_mapping_data = emea_ar_parsing.mapping_data(
data_from_gpt=doc_data_from_gpt, re_run=re_run_mapping_data

File diff suppressed because it is too large Load Diff

View File

@ -32,24 +32,24 @@ from openai import AzureOpenAI
ABB_JSON = dict()
def get_abb_json():
def get_abb_json(doc_source: str = "aus_prospectus"):
global ABB_JSON
if len(ABB_JSON.keys()) == 0:
with open("./configuration/aus_prospectus/abbreviation_records.json", "r") as file:
with open(f"./configuration/{doc_source}/abbreviation_records.json", "r") as file:
# Load the JSON and convert keys to lowercase
ABB_JSON = {key.lower(): value for key, value in json.load(file).items()}
def get_abbre_format_str(fundname):
def get_abbre_format_str(fundname, doc_source: str = "aus_prospectus"):
"""Replaces abbreviations in a fund name with their expanded forms."""
# Convert fund name to lowercase while matching
f_list = fundname.lower().split()
get_abb_json()
get_abb_json(doc_source)
updated_doc_fname_words = [ABB_JSON.get(word, word).lower() for word in f_list]
return " ".join(updated_doc_fname_words)
def replace_abbrevs_in_fundnames(fund_names_list):
def replace_abbrevs_in_fundnames(fund_names_list, doc_source: str = "aus_prospectus"):
"""Replaces abbreviations in a list of fund names."""
return [get_abbre_format_str(fund_name) for fund_name in fund_names_list]
return [get_abbre_format_str(fund_name, doc_source) for fund_name in fund_names_list]
### STEP 2 - Remove Stopwords
@ -440,7 +440,7 @@ def format_response(doc_id, pred_fund, db_fund, clean_pred_name, clean_db_name,
return dt
def final_function_to_match(doc_id, pred_list, db_list, provider_name):
def final_function_to_match(doc_id, pred_list, db_list, provider_name, doc_source: str = "aus_prospectus"):
final_result = {}
df_data = []
unmatched_pred_list = pred_list.copy()
@ -466,8 +466,8 @@ def final_function_to_match(doc_id, pred_list, db_list, provider_name):
# unmatched_pred_list.remove(pred_list[index])
else:
### STEP-1 Abbreviation replacement
cleaned_pred_name1 = replace_abbrevs_in_fundnames([pred_fund])[0]
cleaned_db_list1 = replace_abbrevs_in_fundnames(db_list)
cleaned_pred_name1 = replace_abbrevs_in_fundnames([pred_fund], doc_source)[0]
cleaned_db_list1 = replace_abbrevs_in_fundnames(db_list, doc_source)
# print("--> ",cleaned_db_list1, cleaned_pred_name1)
step1_result, matched_index, all_scores1_, all_matched_fund_names1_ = get_fund_match_final_score(cleaned_db_list1, cleaned_pred_name1)
# print(f"\nStep 1 - Abbreviation Replacement Result: {step1_result}")
@ -617,11 +617,11 @@ def final_function_to_match(doc_id, pred_list, db_list, provider_name):
# print("==>>> DB LIST: ",unmatched_db_list)
# print("==>>> PRED LIST: ",unmatched_pred_list)
if len(unmatched_pred_list)!=0:
cleaned_unmatched_pred_list = replace_abbrevs_in_fundnames(unmatched_pred_list)
cleaned_unmatched_pred_list = replace_abbrevs_in_fundnames(unmatched_pred_list, doc_source)
cleaned_unmatched_pred_list = remove_stopwords_nltk(cleaned_unmatched_pred_list)
cleaned_unmatched_pred_list = remove_special_characters(cleaned_unmatched_pred_list)
cleaned_unmatched_db_list = replace_abbrevs_in_fundnames(unmatched_db_list)
cleaned_unmatched_db_list = replace_abbrevs_in_fundnames(unmatched_db_list, doc_source)
cleaned_unmatched_db_list = remove_stopwords_nltk(cleaned_unmatched_db_list)
cleaned_unmatched_db_list = remove_special_characters(cleaned_unmatched_db_list)
prompt_context = f"""

View File

@ -1,6 +1,7 @@
import os
import json
import pandas as pd
from copy import deepcopy
from utils.biz_utils import get_most_similar_name, remove_common_word
from utils.sql_query_util import (
query_document_fund_mapping,
@ -18,14 +19,18 @@ class DataMapping:
raw_document_data_list: list,
document_mapping_info_df: pd.DataFrame,
output_data_folder: str,
doc_source: str = "emea_ar"
doc_source: str = "emea_ar",
compare_with_provider: bool = True
):
self.doc_id = doc_id
self.datapoints = datapoints
self.doc_source = doc_source
self.compare_with_provider = compare_with_provider
self.raw_document_data_list = raw_document_data_list
if document_mapping_info_df is None or len(document_mapping_info_df) == 0:
self.document_mapping_info_df = query_document_fund_mapping(doc_id, rerun=False)
self.document_mapping_info_df = query_document_fund_mapping(
doc_id, rerun=False
)
else:
self.document_mapping_info_df = document_mapping_info_df
@ -44,7 +49,9 @@ class DataMapping:
def set_mapping_data_by_db(self, document_mapping_info_df: pd.DataFrame):
logger.info("Setting document mapping data")
if document_mapping_info_df is None or len(document_mapping_info_df) == 0:
self.document_mapping_info_df = query_document_fund_mapping(self.doc_id, rerun=False)
self.document_mapping_info_df = query_document_fund_mapping(
self.doc_id, rerun=False
)
else:
self.document_mapping_info_df = document_mapping_info_df
if len(self.document_mapping_info_df) == 0:
@ -92,26 +99,27 @@ class DataMapping:
def get_provider_mapping(self):
if len(self.document_mapping_info_df) == 0:
return pd.DataFrame()
provider_id_list = (
self.document_mapping_info_df["ProviderId"].unique().tolist()
)
provider_id_list = self.document_mapping_info_df["ProviderId"].unique().tolist()
provider_mapping_list = []
for provider_id in provider_id_list:
provider_mapping_list.append(query_investment_by_provider(provider_id, rerun=False))
provider_mapping_list.append(
query_investment_by_provider(provider_id, rerun=False)
)
provider_mapping_df = pd.concat(provider_mapping_list)
provider_mapping_df = provider_mapping_df.drop_duplicates()
provider_mapping_df.reset_index(drop=True, inplace=True)
return provider_mapping_df
def mapping_raw_data_entrance(self):
if self.doc_source == "emear_ar":
if self.doc_source == "emea_ar":
return self.mapping_raw_data()
elif self.doc_source == "aus_prospectus":
return self.mapping_raw_data_aus()
return self.mapping_raw_data_generic()
else:
return self.mapping_raw_data()
def mapping_raw_data_aus(self):
# return self.mapping_raw_data_generic()
def mapping_raw_data_generic(self):
logger.info(f"Mapping raw data for AUS Prospectus document {self.doc_id}")
mapped_data_list = []
# Generate raw name based on fund name and share name by integrate_share_name
@ -128,7 +136,9 @@ class DataMapping:
raw_share_name = raw_data.get("share_name", "")
raw_data_keys = list(raw_data.keys())
if len(raw_share_name) > 0:
integrated_share_name = self.integrate_share_name(raw_fund_name, raw_share_name)
integrated_share_name = self.integrate_share_name(
raw_fund_name, raw_share_name
)
if integrated_share_name not in share_raw_name_list:
share_raw_name_list.append(integrated_share_name)
for datapoint in self.datapoints:
@ -144,7 +154,7 @@ class DataMapping:
"investment_type": 1,
"investment_id": "",
"investment_name": "",
"similarity": 0
"similarity": 0,
}
mapped_data_list.append(mapped_data)
else:
@ -162,29 +172,38 @@ class DataMapping:
"value": raw_data[datapoint],
"investment_type": 33,
"investment_id": "",
"investment_name": ""
"investment_name": "",
}
mapped_data_list.append(mapped_data)
# Mapping raw data with database
iter_count = 30
iter_count = 60
fund_match_result = {}
if len(fund_raw_name_list) > 0:
fund_match_result = self.get_raw_name_db_match_result(fund_raw_name_list, "fund", iter_count)
logger.info(f"Fund match result: \n{fund_match_result}")
fund_match_result = self.get_raw_name_db_match_result(
fund_raw_name_list, "fund", iter_count
)
# logger.info(f"Fund match result: \n{fund_match_result}")
share_match_result = {}
if len(share_raw_name_list) > 0:
share_match_result = self.get_raw_name_db_match_result(share_raw_name_list, "share", iter_count)
logger.info(f"Share match result: \n{share_match_result}")
share_match_result = self.get_raw_name_db_match_result(
share_raw_name_list, "share", iter_count
)
# logger.info(f"Share match result: \n{share_match_result}")
for mapped_data in mapped_data_list:
investment_type = mapped_data["investment_type"]
raw_name = mapped_data["raw_name"]
if investment_type == 33:
if fund_match_result.get(raw_name) is not None:
matched_db_fund_name = fund_match_result[raw_name]
if matched_db_fund_name is not None and len(matched_db_fund_name) > 0:
if (
matched_db_fund_name is not None
and len(matched_db_fund_name) > 0
):
# get FundId from self.doc_fund_mapping
find_fund_df = self.doc_fund_mapping[self.doc_fund_mapping["FundName"] == matched_db_fund_name]
find_fund_df = self.doc_fund_mapping[
self.doc_fund_mapping["FundName"] == matched_db_fund_name
]
if find_fund_df is not None and len(find_fund_df) > 0:
fund_id = find_fund_df["FundId"].values[0]
mapped_data["investment_id"] = fund_id
@ -193,38 +212,82 @@ class DataMapping:
if investment_type == 1:
if share_match_result.get(raw_name) is not None:
matched_db_share_name = share_match_result[raw_name]
if matched_db_share_name is not None and len(matched_db_share_name) > 0:
if (
matched_db_share_name is not None
and len(matched_db_share_name) > 0
):
# get SecId from self.doc_fund_class_mapping
find_share_df = self.doc_fund_class_mapping[self.doc_fund_class_mapping["ShareClassName"] == matched_db_share_name]
find_share_df = self.doc_fund_class_mapping[
self.doc_fund_class_mapping["ShareClassName"]
== matched_db_share_name
]
if find_share_df is not None and len(find_share_df) > 0:
share_id = find_share_df["SecId"].values[0]
mapped_data["investment_id"] = share_id
mapped_data["investment_name"] = matched_db_share_name
mapped_data["similarity"] = 1
self.output_mapping_file(mapped_data_list)
return mapped_data_list
def get_raw_name_db_match_result(self, raw_name_list, investment_type: str, iter_count: int = 30):
def get_raw_name_db_match_result(
self, raw_name_list, investment_type: str, iter_count: int = 30
):
# split raw_name_list into several parts which each part is with 30 elements
# The reason to split is to avoid invoke token limitation issues from CahtGPT
raw_name_list_parts = [raw_name_list[i:i + iter_count]
for i in range(0, len(raw_name_list), iter_count)]
raw_name_list_parts = [
raw_name_list[i : i + iter_count]
for i in range(0, len(raw_name_list), iter_count)
]
all_match_result = {}
doc_fund_name_list = deepcopy(self.doc_fund_name_list)
doc_share_name_list = deepcopy(self.doc_share_name_list)
for raw_name_list in raw_name_list_parts:
if investment_type == "fund":
match_result = final_function_to_match(doc_id=self.doc_id,
pred_list=raw_name_list,
db_list=self.doc_fund_name_list,
provider_name=self.provider_name)
match_result, doc_fund_name_list = self.get_final_function_to_match(
raw_name_list, doc_fund_name_list
)
else:
match_result = final_function_to_match(doc_id=self.doc_id,
pred_list=raw_name_list,
db_list=self.doc_share_name_list,
provider_name=self.provider_name)
match_result, doc_share_name_list = self.get_final_function_to_match(
raw_name_list, doc_share_name_list
)
all_match_result.update(match_result)
return all_match_result
def get_final_function_to_match(self, raw_name_list, db_name_list):
if len(db_name_list) == 0:
match_result = {}
for raw_name in raw_name_list:
match_result[raw_name] = ""
else:
match_result = final_function_to_match(
doc_id=self.doc_id,
pred_list=raw_name_list,
db_list=db_name_list,
provider_name=self.provider_name,
doc_source=self.doc_source
)
matched_name_list = list(match_result.values())
db_name_list = self.remove_matched_names(db_name_list, matched_name_list)
return match_result, db_name_list
def remove_matched_names(self, target_name_list: list, matched_name_list: list):
if len(matched_name_list) == 0:
return target_name_list
matched_name_list = list(set(matched_name_list))
matched_name_list = [
value for value in matched_name_list if value is not None and len(value) > 0
]
for matched_name in matched_name_list:
if (
matched_name is not None
and len(matched_name) > 0
and matched_name in target_name_list
):
target_name_list.remove(matched_name)
return target_name_list
def mapping_raw_data(self):
"""
doc_id, page_index, datapoint, value,
@ -245,9 +308,14 @@ class DataMapping:
if raw_fund_name is None or len(raw_fund_name) == 0:
continue
raw_share_name = raw_data.get("share_name", "")
if len(self.doc_fund_name_list) == 0 and len(self.provider_fund_name_list) == 0:
if (
len(self.doc_fund_name_list) == 0
and len(self.provider_fund_name_list) == 0
):
if len(raw_share_name) > 0:
integrated_share_name = self.integrate_share_name(raw_fund_name, raw_share_name)
integrated_share_name = self.integrate_share_name(
raw_fund_name, raw_share_name
)
raw_data_keys = list(raw_data.keys())
for datapoint in self.datapoints:
if datapoint in raw_data_keys:
@ -262,7 +330,7 @@ class DataMapping:
"investment_type": 1,
"investment_id": "",
"investment_name": "",
"similarity": 0
"similarity": 0,
}
mapped_data_list.append(mapped_data)
else:
@ -279,13 +347,15 @@ class DataMapping:
"value": raw_data[datapoint],
"investment_type": 33,
"investment_id": "",
"investment_name": ""
"investment_name": "",
}
mapped_data_list.append(mapped_data)
else:
raw_name = ""
if raw_share_name is not None and len(raw_share_name) > 0:
raw_name = self.integrate_share_name(raw_fund_name, raw_share_name)
raw_name = self.integrate_share_name(
raw_fund_name, raw_share_name
)
if mapped_share_cache.get(raw_name) is not None:
investment_info = mapped_share_cache[raw_name]
else:
@ -298,14 +368,20 @@ class DataMapping:
)
fund_id = fund_info["id"]
mapped_fund_cache[raw_fund_name] = fund_info
investment_info = self.matching_with_database(
raw_name=raw_name,
raw_share_name=raw_share_name,
raw_fund_name=raw_fund_name,
parent_id=fund_id,
matching_type="share",
process_cache=process_cache
)
investment_info = {}
if len(fund_id) > 0:
investment_info = self.mapping_unique_raw_data(fund_id=fund_id,
raw_fund_name=raw_fund_name,
raw_data_list=raw_data_list)
if investment_info.get("id", None) is None or len(investment_info.get("id", "")) == 0:
investment_info = self.matching_with_database(
raw_name=raw_name,
raw_share_name=raw_share_name,
raw_fund_name=raw_fund_name,
parent_id=fund_id,
matching_type="share",
process_cache=process_cache,
)
mapped_share_cache[raw_name] = investment_info
elif raw_fund_name is not None and len(raw_fund_name) > 0:
raw_name = raw_fund_name
@ -322,7 +398,7 @@ class DataMapping:
"id": "",
"legal_name": "",
"investment_type": -1,
"similarity": 0
"similarity": 0,
}
raw_data_keys = list(raw_data.keys())
@ -339,13 +415,35 @@ class DataMapping:
"investment_type": investment_info["investment_type"],
"investment_id": investment_info["id"],
"investment_name": investment_info["legal_name"],
"similarity": investment_info["similarity"]
"similarity": investment_info["similarity"],
}
mapped_data_list.append(mapped_data)
self.output_mapping_file(mapped_data_list)
return mapped_data_list
def mapping_unique_raw_data(self, fund_id: str, raw_fund_name: str, raw_data_list: list):
share_count = 0
for raw_data in raw_data_list:
fund_name = raw_data.get("fund_name", "")
share_name = raw_data.get("share_name", "")
if fund_name == raw_fund_name and share_name is not None and len(share_name) > 0:
share_count += 1
if share_count > 1:
break
data_info = {}
if share_count == 1:
doc_compare_mapping = self.doc_fund_class_mapping[
self.doc_fund_class_mapping["FundId"] == fund_id
]
if len(doc_compare_mapping) == 1:
data_info["id"] = doc_compare_mapping["SecId"].values[0]
data_info["legal_name"] = doc_compare_mapping["ShareClassName"].values[0]
data_info["investment_type"] = 1
data_info["similarity"] = 1
return data_info
def output_mapping_file(self, mapped_data_list: list):
json_data_file = os.path.join(
self.output_data_json_folder, f"{self.doc_id}.json"
@ -355,10 +453,10 @@ class DataMapping:
extract_data_df = pd.DataFrame(self.raw_document_data_list)
extract_data_df.reset_index(drop=True, inplace=True)
mapping_data_df = pd.DataFrame(mapped_data_list)
mapping_data_df.reset_index(drop=True, inplace=True)
excel_data_file = os.path.join(
self.output_data_excel_folder, f"{self.doc_id}.xlsx"
)
@ -373,7 +471,7 @@ class DataMapping:
raw_name = ""
if raw_share_name is not None and len(raw_share_name) > 0:
raw_name = raw_share_name
# some share names are very short,
# some share names are very short,
# so we need to combine with fund name
raw_name_splits = raw_name.split()
raw_fund_name_splits = raw_fund_name.split()
@ -384,13 +482,13 @@ class DataMapping:
return raw_name
def matching_with_database(
self,
raw_name: str,
raw_share_name: str = None,
self,
raw_name: str,
raw_share_name: str = None,
raw_fund_name: str = None,
parent_id: str = None,
parent_id: str = None,
matching_type: str = "fund",
process_cache: dict = {}
process_cache: dict = {},
):
if len(self.doc_fund_name_list) == 0 and len(self.provider_fund_name_list) == 0:
data_info["id"] = ""
@ -402,7 +500,7 @@ class DataMapping:
data_info["investment_type"] = investment_type
data_info["similarity"] = 0
return data_info
if matching_type == "fund":
doc_compare_name_list = self.doc_fund_name_list
doc_compare_mapping = self.doc_fund_mapping
@ -417,8 +515,9 @@ class DataMapping:
doc_compare_mapping = self.doc_fund_class_mapping[
self.doc_fund_class_mapping["FundId"] == parent_id
]
provider_compare_mapping = self.provider_fund_class_mapping\
[self.provider_fund_class_mapping["FundId"] == parent_id]
provider_compare_mapping = self.provider_fund_class_mapping[
self.provider_fund_class_mapping["FundId"] == parent_id
]
if len(doc_compare_mapping) == 0:
if len(provider_compare_mapping) == 0:
doc_compare_name_list = self.doc_share_name_list
@ -435,9 +534,10 @@ class DataMapping:
doc_compare_name_list = (
doc_compare_mapping["ShareClassName"].unique().tolist()
)
if len(provider_compare_mapping) == 0 or \
len(provider_compare_mapping) < len(doc_compare_mapping):
if len(provider_compare_mapping) == 0 or len(
provider_compare_mapping
) < len(doc_compare_mapping):
provider_compare_name_list = doc_compare_name_list
provider_compare_mapping = doc_compare_mapping
else:
@ -459,58 +559,68 @@ class DataMapping:
if doc_compare_name_list is not None and len(doc_compare_name_list) > 0:
_, pre_common_word_list = remove_common_word(doc_compare_name_list)
max_similarity_name, max_similarity = get_most_similar_name(
raw_name,
doc_compare_name_list,
share_name=raw_share_name,
raw_name,
doc_compare_name_list,
share_name=raw_share_name,
fund_name=raw_fund_name,
matching_type=matching_type,
process_cache=process_cache)
process_cache=process_cache,
)
if matching_type == "fund":
threshold = 0.7
else:
threshold = 0.9
if self.compare_with_provider:
threshold = 0.9
else:
threshold = 0.6
if max_similarity is not None and max_similarity >= threshold:
data_info["id"] = doc_compare_mapping[
doc_compare_mapping[compare_name_dp] == max_similarity_name
][compare_id_dp].values[0]
data_info["legal_name"] = max_similarity_name
data_info["similarity"] = max_similarity
if data_info.get("id", None) is None or len(data_info.get("id", "")) == 0:
# set pre_common_word_list, reason: the document mapping for same fund maybe different with provider mapping
# the purpose is to get the most common word list, to improve the similarity.
max_similarity_name, max_similarity = get_most_similar_name(
raw_name,
provider_compare_name_list,
share_name=raw_share_name,
fund_name=raw_fund_name,
matching_type=matching_type,
pre_common_word_list=pre_common_word_list,
process_cache=process_cache
)
threshold = 0.7
if matching_type == "share":
threshold = 0.5
round_similarity = 0
if max_similarity is not None and isinstance(max_similarity, float):
round_similarity = round(max_similarity, 1)
if round_similarity is not None and round_similarity >= threshold:
data_info["id"] = provider_compare_mapping[
provider_compare_mapping[compare_name_dp] == max_similarity_name
][compare_id_dp].values[0]
data_info["legal_name"] = max_similarity_name
data_info["similarity"] = max_similarity
else:
if len(doc_compare_name_list) == 1:
data_info["id"] = doc_compare_mapping[
doc_compare_mapping[compare_name_dp] == doc_compare_name_list[0]
if self.compare_with_provider:
max_similarity_name, max_similarity = get_most_similar_name(
raw_name,
provider_compare_name_list,
share_name=raw_share_name,
fund_name=raw_fund_name,
matching_type=matching_type,
pre_common_word_list=pre_common_word_list,
process_cache=process_cache,
)
threshold = 0.7
if matching_type == "share":
threshold = 0.5
round_similarity = 0
if max_similarity is not None and isinstance(max_similarity, float):
round_similarity = round(max_similarity, 1)
if round_similarity is not None and round_similarity >= threshold:
data_info["id"] = provider_compare_mapping[
provider_compare_mapping[compare_name_dp] == max_similarity_name
][compare_id_dp].values[0]
data_info["legal_name"] = doc_compare_name_list[0]
data_info["similarity"] = 1
data_info["legal_name"] = max_similarity_name
data_info["similarity"] = max_similarity
else:
data_info["id"] = ""
data_info["legal_name"] = ""
data_info["similarity"] = 0
if len(doc_compare_name_list) == 1:
data_info["id"] = doc_compare_mapping[
doc_compare_mapping[compare_name_dp]
== doc_compare_name_list[0]
][compare_id_dp].values[0]
data_info["legal_name"] = doc_compare_name_list[0]
data_info["similarity"] = 1
else:
data_info["id"] = ""
data_info["legal_name"] = ""
data_info["similarity"] = 0
else:
data_info["id"] = ""
data_info["legal_name"] = ""
data_info["similarity"] = 0
data_info["investment_type"] = investment_type
else:
data_info["id"] = ""