support extract data by pdf page image
This commit is contained in:
parent
67371e534e
commit
48dc8690c3
|
|
@ -21,6 +21,8 @@ class DataExtraction:
|
|||
datapoint_page_info: dict,
|
||||
datapoints: list,
|
||||
document_mapping_info_df: pd.DataFrame,
|
||||
extract_way: str = "text",
|
||||
output_image_folder: str = None,
|
||||
) -> None:
|
||||
self.doc_id = doc_id
|
||||
self.pdf_file = pdf_file
|
||||
|
|
@ -48,6 +50,13 @@ class DataExtraction:
|
|||
self.instructions_config = self.get_instructions_config()
|
||||
self.datapoint_level_config = self.get_datapoint_level()
|
||||
self.datapoint_name_config = self.get_datapoint_name()
|
||||
self.extract_way = extract_way
|
||||
self.output_image_folder = output_image_folder
|
||||
|
||||
def get_pdf_image_base64(self, page_index: int) -> dict:
|
||||
pdf_util = PDFUtil(self.pdf_file)
|
||||
return pdf_util.extract_image_from_page(page_index=page_index,
|
||||
output_folder=self.output_image_folder)
|
||||
|
||||
def get_instructions_config(self) -> dict:
|
||||
instructions_config_file = r"./instructions/data_extraction_prompts_config.json"
|
||||
|
|
@ -84,6 +93,15 @@ class DataExtraction:
|
|||
return page_nums_with_datapoints
|
||||
|
||||
def extract_data(self) -> dict:
|
||||
logger.info(f"Extracting data from document {self.doc_id}, extract way: {self.extract_way}")
|
||||
if self.extract_way == "text":
|
||||
return self.extract_data_by_text()
|
||||
elif self.extract_way == "image":
|
||||
return self.extract_data_by_image()
|
||||
else:
|
||||
return self.extract_data_by_text()
|
||||
|
||||
def extract_data_by_text(self) -> dict:
|
||||
"""
|
||||
keys are
|
||||
doc_id, page_index, datapoint, value, raw_fund_name, fund_id, fund_name, raw_share_name, share_id, share_name
|
||||
|
|
@ -97,7 +115,7 @@ class DataExtraction:
|
|||
page_datapoints = self.get_datapoints_by_page_num(page_num)
|
||||
if len(page_datapoints) == 0:
|
||||
continue
|
||||
extract_data = self.extract_data_by_page(
|
||||
extract_data = self.extract_data_by_page_text(
|
||||
page_num,
|
||||
page_text,
|
||||
page_datapoints,
|
||||
|
|
@ -140,7 +158,7 @@ class DataExtraction:
|
|||
next_page_text = self.page_text_dict.get(next_page_num, "")
|
||||
target_text = current_text + next_page_text
|
||||
# try to get data by current page_datapoints
|
||||
next_page_extract_data = self.extract_data_by_page(
|
||||
next_page_extract_data = self.extract_data_by_page_text(
|
||||
next_page_num,
|
||||
target_text,
|
||||
next_datapoints,
|
||||
|
|
@ -177,6 +195,90 @@ class DataExtraction:
|
|||
logger.error(f"Error in extracting data from next page: {e}")
|
||||
break
|
||||
|
||||
self.output_data_to_file(data_list)
|
||||
|
||||
return data_list
|
||||
|
||||
def extract_data_by_image(self) -> dict:
|
||||
"""
|
||||
keys are
|
||||
doc_id, page_index, datapoint, value, raw_fund_name, fund_id, fund_name, raw_share_name, share_id, share_name
|
||||
"""
|
||||
data_list = []
|
||||
pdf_page_count = len(self.page_text_dict.keys())
|
||||
handled_page_num_list = []
|
||||
for page_num, page_text in self.page_text_dict.items():
|
||||
if page_num in handled_page_num_list:
|
||||
continue
|
||||
page_datapoints = self.get_datapoints_by_page_num(page_num)
|
||||
if len(page_datapoints) == 0:
|
||||
continue
|
||||
|
||||
extract_data = self.extract_data_by_page_image(page_num=page_num,
|
||||
page_datapoints=page_datapoints)
|
||||
data_list.append(extract_data)
|
||||
|
||||
page_data_list = extract_data.get("extract_data", {}).get("data", [])
|
||||
|
||||
current_page_data_count = len(page_data_list)
|
||||
if current_page_data_count > 0:
|
||||
count = 1
|
||||
|
||||
while count < 3:
|
||||
try:
|
||||
next_page_num = page_num + count
|
||||
if next_page_num >= pdf_page_count:
|
||||
break
|
||||
next_datapoints = page_datapoints
|
||||
if next_page_num in self.page_nums_with_datapoints:
|
||||
should_continue = False
|
||||
next_datapoints = self.get_datapoints_by_page_num(next_page_num)
|
||||
if len(next_datapoints) == 0:
|
||||
should_continue = True
|
||||
else:
|
||||
for next_datapoint in next_datapoints:
|
||||
if next_datapoint not in page_datapoints:
|
||||
should_continue = True
|
||||
break
|
||||
next_datapoints.extend(page_datapoints)
|
||||
# remove duplicate datapoints
|
||||
next_datapoints = list(set(next_datapoints))
|
||||
if not should_continue:
|
||||
break
|
||||
# try to get data by current page_datapoints
|
||||
next_page_extract_data = self.extract_data_by_page_image(
|
||||
page_num=next_page_num,
|
||||
page_datapoints=next_datapoints
|
||||
)
|
||||
next_page_data_list = next_page_extract_data.get(
|
||||
"extract_data", {}
|
||||
).get("data", [])
|
||||
|
||||
if next_page_data_list is not None and len(next_page_data_list) > 0:
|
||||
data_list.append(next_page_extract_data)
|
||||
handled_page_num_list.append(next_page_num)
|
||||
exist_current_page_datapoint = False
|
||||
for next_page_data in next_page_data_list:
|
||||
for page_datapoint in page_datapoints:
|
||||
if page_datapoint in list(next_page_data.keys()):
|
||||
exist_current_page_datapoint = True
|
||||
break
|
||||
if exist_current_page_datapoint:
|
||||
break
|
||||
if not exist_current_page_datapoint:
|
||||
break
|
||||
else:
|
||||
break
|
||||
count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"Error in extracting data from next page: {e}")
|
||||
break
|
||||
|
||||
self.output_data_to_file(data_list)
|
||||
|
||||
return data_list
|
||||
|
||||
def output_data_to_file(self, data_list: list) -> None:
|
||||
json_data_file = os.path.join(
|
||||
self.output_data_json_folder, f"{self.doc_id}.json"
|
||||
)
|
||||
|
|
@ -191,9 +293,7 @@ class DataExtraction:
|
|||
with pd.ExcelWriter(excel_data_file) as writer:
|
||||
data_df.to_excel(writer, sheet_name="extract_data", index=False)
|
||||
|
||||
return data_list
|
||||
|
||||
def extract_data_by_page(
|
||||
def extract_data_by_page_text(
|
||||
self,
|
||||
page_num: int,
|
||||
page_text: str,
|
||||
|
|
@ -246,6 +346,49 @@ class DataExtraction:
|
|||
data_dict["extract_data"] = data
|
||||
return data_dict
|
||||
|
||||
def extract_data_by_page_image(
|
||||
self,
|
||||
page_num: int,
|
||||
page_datapoints: list
|
||||
) -> dict:
|
||||
"""
|
||||
keys are
|
||||
doc_id, page_index, datapoint, value, raw_fund_name, fund_id, fund_name, raw_share_name, share_id, share_name
|
||||
"""
|
||||
logger.info(f"Extracting data from page {page_num}")
|
||||
image_base64 = self.get_pdf_image_base64(page_num)
|
||||
instructions = self.get_instructions_by_datapoints(
|
||||
"", page_datapoints, need_exclude=False, exclude_data=None
|
||||
)
|
||||
response, with_error = chat(
|
||||
instructions, response_format={"type": "json_object"}, image_base64=image_base64
|
||||
)
|
||||
if with_error:
|
||||
logger.error(f"Error in extracting tables from page")
|
||||
data_dict = {"doc_id": self.doc_id}
|
||||
data_dict["page_index"] = page_num
|
||||
data_dict["datapoints"] = ", ".join(page_datapoints)
|
||||
data_dict["instructions"] = instructions
|
||||
data_dict["raw_answer"] = response
|
||||
data_dict["extract_data"] = {"data": []}
|
||||
return data_dict
|
||||
try:
|
||||
data = json.loads(response)
|
||||
except:
|
||||
try:
|
||||
data = json_repair.loads(response)
|
||||
except:
|
||||
data = {"data": []}
|
||||
data = self.validate_data(data)
|
||||
|
||||
data_dict = {"doc_id": self.doc_id}
|
||||
data_dict["page_index"] = page_num
|
||||
data_dict["datapoints"] = ", ".join(page_datapoints)
|
||||
data_dict["instructions"] = instructions
|
||||
data_dict["raw_answer"] = response
|
||||
data_dict["extract_data"] = data
|
||||
return data_dict
|
||||
|
||||
def chat_by_split_context(self,
|
||||
page_text: str,
|
||||
page_datapoints: list,
|
||||
|
|
@ -412,16 +555,30 @@ class DataExtraction:
|
|||
performance_fee_value: list
|
||||
end
|
||||
"""
|
||||
instructions = []
|
||||
if self.extract_way == "text":
|
||||
instructions = [f"Context:\n{page_text}\n\nInstructions:\n"]
|
||||
|
||||
datapoint_name_list = []
|
||||
for datapoint in datapoints:
|
||||
datapoint_name = self.datapoint_name_config.get(datapoint, "")
|
||||
datapoint_name_list.append(datapoint_name)
|
||||
|
||||
if self.extract_way == "text":
|
||||
summary = self.instructions_config.get("summary", "\n")
|
||||
elif self.extract_way == "image":
|
||||
summary = self.instructions_config.get("summary_image", "\n")
|
||||
else:
|
||||
summary = self.instructions_config.get("summary", "\n")
|
||||
|
||||
instructions.append(summary.format(", ".join(datapoint_name_list)))
|
||||
instructions.append("\n")
|
||||
|
||||
if self.extract_way == "image":
|
||||
image_features = self.instructions_config.get("image_features", [])
|
||||
instructions.extend(image_features)
|
||||
instructions.append("\n")
|
||||
|
||||
instructions.append("Datapoints Reported name:\n")
|
||||
reported_name_info = self.instructions_config.get("reported_name", {})
|
||||
for datapoint in datapoints:
|
||||
|
|
|
|||
|
|
@ -104,6 +104,7 @@ class DataMapping:
|
|||
raw_fund_name, fund_id, fund_name,
|
||||
raw_share_name, share_id, share_name
|
||||
"""
|
||||
logger.info(f"Mapping raw data for document {self.doc_id}")
|
||||
mapped_data_list = []
|
||||
mapped_fund_cache = {}
|
||||
mapped_share_cache = {}
|
||||
|
|
|
|||
|
|
@ -302,13 +302,13 @@ class Metrics:
|
|||
dp_ground_truth["unique_words"] = dp_ground_truth["raw_name"].apply(
|
||||
get_unique_words_text
|
||||
)
|
||||
ground_truth_unique_words = dp_ground_truth["unique_words"].unique().tolist()
|
||||
ground_truth_unique_words_list = dp_ground_truth["unique_words"].unique().tolist()
|
||||
ground_truth_raw_names = dp_ground_truth["raw_name"].unique().tolist()
|
||||
# add new column to store unique words for dp_prediction
|
||||
dp_prediction["unique_words"] = dp_prediction["raw_name"].apply(
|
||||
get_unique_words_text
|
||||
)
|
||||
pred_unique_words = dp_prediction["unique_words"].unique().tolist()
|
||||
pred_unique_words_list = dp_prediction["unique_words"].unique().tolist()
|
||||
pred_raw_names = dp_prediction["raw_name"].unique().tolist()
|
||||
|
||||
true_data = []
|
||||
|
|
@ -330,9 +330,9 @@ class Metrics:
|
|||
|
||||
find_raw_name_in_gt = [gt_raw_name for gt_raw_name in ground_truth_raw_names
|
||||
if gt_raw_name in pred_raw_name or pred_raw_name in gt_raw_name]
|
||||
if pred_unique_words in ground_truth_unique_words or len(find_raw_name_in_gt) > 0:
|
||||
if pred_unique_words in ground_truth_unique_words_list or len(find_raw_name_in_gt) > 0:
|
||||
# get the ground truth data with the same unique words
|
||||
if pred_unique_words in ground_truth_unique_words:
|
||||
if pred_unique_words in ground_truth_unique_words_list:
|
||||
gt_data = dp_ground_truth[
|
||||
dp_ground_truth["unique_words"] == pred_unique_words
|
||||
].iloc[0]
|
||||
|
|
@ -383,7 +383,7 @@ class Metrics:
|
|||
find_raw_name_in_pred = [pred_raw_name for pred_raw_name in pred_raw_names
|
||||
if gt_raw_name in pred_raw_name or pred_raw_name in gt_raw_name]
|
||||
|
||||
if gt_unique_words not in pred_unique_words and \
|
||||
if gt_unique_words not in pred_unique_words_list and \
|
||||
len(find_raw_name_in_pred) == 0:
|
||||
true_data.append(1)
|
||||
pred_data.append(0)
|
||||
|
|
@ -394,7 +394,7 @@ class Metrics:
|
|||
"pred_raw_name": "",
|
||||
"investment_type": gt_investment_type,
|
||||
"error_type": "raw name missing",
|
||||
"error_value": pred_data_point_value,
|
||||
"error_value": "",
|
||||
"correct_value": gt_raw_name,
|
||||
}
|
||||
missing_error_data.append(error_data)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,18 @@
|
|||
{
|
||||
"summary": "Read the context carefully.\nMaybe exists {} data in the context.\n",
|
||||
"summary_image": "Read the image carefully.\nMaybe exists {} data in the image.\n",
|
||||
"image_features":
|
||||
[
|
||||
"1. Identify the text in the PDF page image.",
|
||||
"2. Identify and format the all of tables in the PDF page image.",
|
||||
"Table contents should be as markdown format,",
|
||||
"ensuring the table structure and contents are exactly as in the PDF page image.",
|
||||
"The format should be: |Column1|Column2|\n|---|---|\n|Row1Col1|Row1Col2|",
|
||||
"Each cell in the table(s) should be in the proper position of relevant row and column.",
|
||||
" 3. Extract data from upon parsed text and table(s) contents.",
|
||||
"3.1 The upon parsed text and table(s) contents as context.",
|
||||
"3.2 Please extract data from the context."
|
||||
],
|
||||
"reported_name": {
|
||||
"tor": "The TOR reported name could be:\nTOR, Turnover Ratio, Portfolio Turnover, Portfolio turnover ratio, PTR, etc.",
|
||||
"ogc": "The OGC reported name could be:\nOGC, OGF, Ongoing Charge, Operation Charge, Ongoing charges in per cent, Ongoing charges in percent, Ongoing charges as a percentage, On Going Charges, Operating Charge, Ongoing Fund Charge, etc.",
|
||||
|
|
|
|||
61
main.py
61
main.py
|
|
@ -20,6 +20,7 @@ class EMEA_AR_Parsing:
|
|||
pdf_folder: str = r"/data/emea_ar/pdf/",
|
||||
output_extract_data_folder: str = r"/data/emea_ar/output/extract_data/docs/",
|
||||
output_mapping_data_folder: str = r"/data/emea_ar/output/mapping_data/docs/",
|
||||
extract_way: str = "text",
|
||||
) -> None:
|
||||
self.doc_id = doc_id
|
||||
self.pdf_folder = pdf_folder
|
||||
|
|
@ -27,13 +28,29 @@ class EMEA_AR_Parsing:
|
|||
self.pdf_file = self.download_pdf()
|
||||
self.document_mapping_info_df = query_document_fund_mapping(doc_id)
|
||||
|
||||
if extract_way is None or len(extract_way) == 0:
|
||||
extract_way = "text"
|
||||
self.extract_way = extract_way
|
||||
self.output_extract_image_folder = None
|
||||
if self.extract_way == "image":
|
||||
self.output_extract_image_folder = r"/data/emea_ar/output/extract_data/images/"
|
||||
os.makedirs(self.output_extract_image_folder, exist_ok=True)
|
||||
|
||||
if output_extract_data_folder is None or len(output_extract_data_folder) == 0:
|
||||
output_extract_data_folder = r"/data/emea_ar/output/extract_data/docs/"
|
||||
if not output_extract_data_folder.endswith("/"):
|
||||
output_extract_data_folder = f"{output_extract_data_folder}/"
|
||||
if extract_way is not None and len(extract_way) > 0:
|
||||
output_extract_data_folder = f"{output_extract_data_folder}by_{extract_way}/"
|
||||
self.output_extract_data_folder = output_extract_data_folder
|
||||
os.makedirs(self.output_extract_data_folder, exist_ok=True)
|
||||
|
||||
if output_mapping_data_folder is None or len(output_mapping_data_folder) == 0:
|
||||
output_mapping_data_folder = r"/data/emea_ar/output/mapping_data/docs/"
|
||||
if not output_mapping_data_folder.endswith("/"):
|
||||
output_mapping_data_folder = f"{output_mapping_data_folder}/"
|
||||
if extract_way is not None and len(extract_way) > 0:
|
||||
output_mapping_data_folder = f"{output_mapping_data_folder}by_{extract_way}/"
|
||||
self.output_mapping_data_folder = output_mapping_data_folder
|
||||
os.makedirs(self.output_mapping_data_folder, exist_ok=True)
|
||||
|
||||
|
|
@ -58,7 +75,8 @@ class EMEA_AR_Parsing:
|
|||
datapoints.remove("doc_id")
|
||||
return datapoints
|
||||
|
||||
def extract_data(self, re_run: bool = False) -> list:
|
||||
def extract_data(self,
|
||||
re_run: bool = False,) -> list:
|
||||
if not re_run:
|
||||
output_data_json_folder = os.path.join(
|
||||
self.output_extract_data_folder, "json/"
|
||||
|
|
@ -81,6 +99,8 @@ class EMEA_AR_Parsing:
|
|||
self.datapoint_page_info,
|
||||
self.datapoints,
|
||||
self.document_mapping_info_df,
|
||||
extract_way=self.extract_way,
|
||||
output_image_folder=self.output_extract_image_folder
|
||||
)
|
||||
data_from_gpt = data_extraction.extract_data()
|
||||
return data_from_gpt
|
||||
|
|
@ -124,11 +144,18 @@ def filter_pages(doc_id: str, pdf_folder: str) -> None:
|
|||
|
||||
|
||||
def extract_data(
|
||||
doc_id: str, pdf_folder: str, output_data_folder: str, re_run: bool = False
|
||||
doc_id: str,
|
||||
pdf_folder: str,
|
||||
output_data_folder: str,
|
||||
extract_way: str = "text",
|
||||
re_run: bool = False
|
||||
) -> None:
|
||||
logger.info(f"Extract EMEA AR data for doc_id: {doc_id}")
|
||||
emea_ar_parsing = EMEA_AR_Parsing(
|
||||
doc_id, pdf_folder, output_extract_data_folder=output_data_folder
|
||||
doc_id,
|
||||
pdf_folder,
|
||||
output_extract_data_folder=output_data_folder,
|
||||
extract_way=extract_way
|
||||
)
|
||||
data_from_gpt = emea_ar_parsing.extract_data(re_run)
|
||||
return data_from_gpt
|
||||
|
|
@ -139,6 +166,7 @@ def mapping_data(
|
|||
pdf_folder: str,
|
||||
output_extract_data_folder: str,
|
||||
output_mapping_folder: str,
|
||||
extract_way: str = "text",
|
||||
re_run_extract_data: bool = False,
|
||||
re_run_mapping_data: bool = False,
|
||||
) -> None:
|
||||
|
|
@ -148,6 +176,7 @@ def mapping_data(
|
|||
pdf_folder,
|
||||
output_extract_data_folder=output_extract_data_folder,
|
||||
output_mapping_data_folder=output_mapping_folder,
|
||||
extract_way=extract_way,
|
||||
)
|
||||
doc_data_from_gpt = emea_ar_parsing.extract_data(re_run=re_run_extract_data)
|
||||
doc_mapping_data = emea_ar_parsing.mapping_data(
|
||||
|
|
@ -161,6 +190,7 @@ def batch_extract_data(
|
|||
doc_data_excel_file: str = None,
|
||||
output_child_folder: str = r"/data/emea_ar/output/extract_data/docs/",
|
||||
output_total_folder: str = r"/data/emea_ar/output/extract_data/total/",
|
||||
extract_way: str = "text",
|
||||
special_doc_id_list: list = None,
|
||||
re_run: bool = False,
|
||||
) -> None:
|
||||
|
|
@ -188,6 +218,7 @@ def batch_extract_data(
|
|||
doc_id=doc_id,
|
||||
pdf_folder=pdf_folder,
|
||||
output_data_folder=output_child_folder,
|
||||
extract_way=extract_way,
|
||||
re_run=re_run,
|
||||
)
|
||||
result_list.extend(data_from_gpt)
|
||||
|
|
@ -214,6 +245,7 @@ def batch_start_job(
|
|||
output_mapping_child_folder: str = r"/data/emea_ar/output/mapping_data/docs/",
|
||||
output_extract_data_total_folder: str = r"/data/emea_ar/output/extract_data/total/",
|
||||
output_mapping_total_folder: str = r"/data/emea_ar/output/mapping_data/total/",
|
||||
extract_way: str = "text",
|
||||
special_doc_id_list: list = None,
|
||||
re_run_extract_data: bool = False,
|
||||
re_run_mapping_data: bool = False,
|
||||
|
|
@ -245,6 +277,7 @@ def batch_start_job(
|
|||
pdf_folder=pdf_folder,
|
||||
output_extract_data_folder=output_extract_data_child_folder,
|
||||
output_mapping_folder=output_mapping_child_folder,
|
||||
extract_way=extract_way,
|
||||
re_run_extract_data=re_run_extract_data,
|
||||
re_run_mapping_data=re_run_mapping_data,
|
||||
)
|
||||
|
|
@ -263,7 +296,7 @@ def batch_start_job(
|
|||
time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
|
||||
output_file = os.path.join(
|
||||
output_extract_data_total_folder,
|
||||
f"extract_data_info_{len(pdf_files)}_documents_{time_stamp}.xlsx",
|
||||
f"extract_data_info_{len(pdf_files)}_documents_by_{extract_way}_{time_stamp}.xlsx",
|
||||
)
|
||||
with pd.ExcelWriter(output_file) as writer:
|
||||
result_extract_data_df.to_excel(
|
||||
|
|
@ -275,7 +308,7 @@ def batch_start_job(
|
|||
time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
|
||||
output_file = os.path.join(
|
||||
output_mapping_total_folder,
|
||||
f"mapping_data_info_{len(pdf_files)}_documents_{time_stamp}.xlsx",
|
||||
f"mapping_data_info_{len(pdf_files)}_documents_by_{extract_way}_{time_stamp}.xlsx",
|
||||
)
|
||||
with pd.ExcelWriter(output_file) as writer:
|
||||
result_mappingdata_df.to_excel(
|
||||
|
|
@ -489,7 +522,8 @@ def test_auto_generate_instructions():
|
|||
|
||||
def test_data_extraction_metrics():
|
||||
data_type = "data_extraction"
|
||||
prediction_file = r"/data/emea_ar/output/mapping_data/total/mapping_data_info_88_documents_20240917121708.xlsx"
|
||||
prediction_file = r"/data/emea_ar/output/mapping_data/total/mapping_data_info_88_documents_20240919120502.xlsx"
|
||||
# prediction_file = r"/data/emea_ar/output/mapping_data/docs/by_text/excel/321733631.xlsx"
|
||||
prediction_sheet_name = "mapping_data"
|
||||
ground_truth_file = r"/data/emea_ar/ground_truth/data_extraction/mapping_data_info_73_documents.xlsx"
|
||||
ground_truth_sheet_name = "mapping_data"
|
||||
|
|
@ -536,13 +570,21 @@ if __name__ == "__main__":
|
|||
# )
|
||||
|
||||
# doc_id = "476492237"
|
||||
# extract_data(doc_id, pdf_folder, output_extract_data_child_folder, re_run)
|
||||
special_doc_id_list = []
|
||||
# extract_way = "image"
|
||||
# extract_data(doc_id,
|
||||
# pdf_folder,
|
||||
# output_extract_data_child_folder,
|
||||
# extract_way,
|
||||
# re_run_extract_data)
|
||||
|
||||
special_doc_id_list = ["476492237"]
|
||||
output_mapping_child_folder = r"/data/emea_ar/output/mapping_data/docs/"
|
||||
output_mapping_total_folder = r"/data/emea_ar/output/mapping_data/total/"
|
||||
re_run_mapping_data = True
|
||||
force_save_total_data = False
|
||||
|
||||
force_save_total_data = True
|
||||
extract_ways = ["text"]
|
||||
# for extract_way in extract_ways:
|
||||
# batch_start_job(
|
||||
# pdf_folder,
|
||||
# page_filter_ground_truth_file,
|
||||
|
|
@ -550,6 +592,7 @@ if __name__ == "__main__":
|
|||
# output_mapping_child_folder,
|
||||
# output_extract_data_total_folder,
|
||||
# output_mapping_total_folder,
|
||||
# extract_way,
|
||||
# special_doc_id_list,
|
||||
# re_run_extract_data,
|
||||
# re_run_mapping_data,
|
||||
|
|
|
|||
|
|
@ -147,6 +147,36 @@ class PDFUtil:
|
|||
print_exc()
|
||||
return {}
|
||||
|
||||
def extract_image_from_page(self,
|
||||
page_index: int,
|
||||
zoom:float = 2.0,
|
||||
output_folder: str = None):
|
||||
try:
|
||||
pdf_doc = fitz.open(self.pdf_file)
|
||||
try:
|
||||
pdf_encrypted = pdf_doc.isEncrypted
|
||||
except:
|
||||
pdf_encrypted = pdf_doc.is_encrypted
|
||||
if pdf_encrypted:
|
||||
pdf_doc.authenticate("")
|
||||
pdf_base_name = os.path.basename(self.pdf_file).replace(".pdf", "")
|
||||
mat = fitz.Matrix(zoom, zoom)
|
||||
page = pdf_doc[page_index]
|
||||
pix = page.get_pixmap(matrix=mat)
|
||||
img_buffer = pix.tobytes(output='png')
|
||||
img_base64 = base64.b64encode(img_buffer).decode('utf-8')
|
||||
if output_folder and len(output_folder) > 0:
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
image_file = os.path.join(output_folder, f"{pdf_base_name}_{page_index}.png")
|
||||
pix.save(image_file)
|
||||
pdf_doc.close()
|
||||
return img_base64
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting image from page: {e}")
|
||||
print_exc()
|
||||
return None
|
||||
|
||||
|
||||
def parse_blocks_page(self, page: fitz.Page):
|
||||
blocks = page.get_text("blocks")
|
||||
list_of_blocks = []
|
||||
|
|
|
|||
Loading…
Reference in New Issue