dc-ml-emea-ar/utils/gpt_utils.py

121 lines
4.2 KiB
Python
Raw Normal View History

2024-08-19 14:52:13 +00:00
# from transformers import GPT2TokenizerFast
import tiktoken
from openai import AzureOpenAI
import openai
import os
from time import sleep
import dotenv
# loads .env file with your OPENAI_API_KEY
dotenv.load_dotenv()
def set_environment_variables(engine=os.getenv("Engine_0613_16k")):
if engine.startswith('gpt4') or engine.startswith('gpt-4'):
openai.api_base = os.getenv("OPENAI_API_BASE_DC")
openai.api_key = os.getenv("OPENAI_API_KEY_GPT4")
elif engine.startswith('modc-stg-gpt4'):
openai.api_base = os.getenv("OPENAI_API_BASE_GPT4_MODC")
openai.api_key = os.getenv("OPENAI_API_KEY_GPT4_MODC")
elif engine.upper() == 'ENGINE_GPT4_TURBO':
openai.api_base = os.getenv("OPENAI_API_BASE_GPT4_TURBO")
openai.api_key = os.getenv("OPENAI_API_KEY_GPT4_TURBO")
elif engine.startswith('modc-stg-gpt35turbo16k'):
openai.api_base = os.getenv("OPENAI_API_BASE_GPT3_MODC")
openai.api_key = os.getenv("OPENAI_API_KEY_GPT3_MODC")
else:
openai.api_base = os.getenv("OPENAI_API_BASE")
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.Engine = engine
openai.api_type = os.getenv("OPENAI_API_TYPE")
openai.api_version = os.getenv("OPENAI_API_VERSION")
# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
tokenizer = tiktoken.get_encoding("cl100k_base")
def get_embedding(text, engine=os.getenv("EMBEDDING_ENGINE")):
count = 0
error = ''
while count < 5:
try:
if count > 0:
print(f'retrying the {count} time for getting text embedding...')
return openai.Embedding.create(input=text, engine=engine)['data'][0]['embedding']
except Exception as e:
error = str(e)
print(error)
count += 1
sleep(1)
def num_tokens_from_string(string: str) -> int:
"""Returns the number of tokens in a text string."""
num_tokens = len(tokenizer.encode(string))
return num_tokens
def num_tokens_from_messages(messages, model="gpt-35-turbo-16k"):
"""Returns the number of tokens used by a list of messages."""
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-35-turbo-16k":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-32k":
tokens_per_message = 3
tokens_per_name = 1
else:
tokens_per_message = 3
tokens_per_name = 1
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def chat(prompt: str,
engine = os.getenv("Engine_GPT4o"),
azure_endpoint=os.getenv("OPENAI_API_BASE_GPT4o"),
api_key=os.getenv("OPENAI_API_KEY_GPT4o"),
api_version=os.getenv("OPENAI_API_VERSION_GPT4o"),
temperature: float = 0.0):
client = AzureOpenAI(
azure_endpoint=azure_endpoint,
api_key=api_key,
api_version=api_version
)
count = 0
error = ''
max_tokens = 4000
request_timeout = 120
while count < 8:
try:
if count > 0:
print(f'retrying the {count} time...')
response = client.chat.completions.create(
model=engine,
temperature=temperature,
max_tokens=max_tokens,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
timeout=request_timeout,
stop=None,
messages=[
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content, False
except Exception as e:
error = str(e)
print(f"error message: {error}")
if 'maximum context length' in error:
return error, True
count += 1
sleep(3)
return error, True