424 lines
18 KiB
Python
424 lines
18 KiB
Python
import core.logger as logging
|
||
from datetime import datetime
|
||
from time import sleep
|
||
import pandas as pd
|
||
from core.biz.market_data import MarketData
|
||
from core.db.db_market_data import DBMarketData
|
||
from core.biz.metrics_calculation import MetricsCalculation
|
||
from core.utils import (
|
||
datetime_to_timestamp,
|
||
timestamp_to_datetime,
|
||
transform_date_time_to_timestamp,
|
||
)
|
||
from trade_data_main import TradeDataMain
|
||
from config import (
|
||
API_KEY,
|
||
SECRET_KEY,
|
||
PASSPHRASE,
|
||
SANDBOX,
|
||
OKX_MONITOR_CONFIG,
|
||
US_STOCK_MONITOR_CONFIG,
|
||
MYSQL_CONFIG,
|
||
BAR_THRESHOLD,
|
||
)
|
||
|
||
logger = logging.logger
|
||
|
||
|
||
class MarketDataMain:
|
||
def __init__(self, is_us_stock: bool = False):
|
||
self.market_data = MarketData(
|
||
api_key=API_KEY,
|
||
secret_key=SECRET_KEY,
|
||
passphrase=PASSPHRASE,
|
||
sandbox=SANDBOX,
|
||
is_us_stock=is_us_stock,
|
||
)
|
||
if is_us_stock:
|
||
self.symbols = US_STOCK_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"symbols", ["QQQ"]
|
||
)
|
||
self.bars = US_STOCK_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"bars", ["5m"]
|
||
)
|
||
self.initial_date = US_STOCK_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2015-08-30 00:00:00"
|
||
)
|
||
else:
|
||
self.symbols = OKX_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"symbols", ["XCH-USDT"]
|
||
)
|
||
self.bars = OKX_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"bars", ["5m", "15m", "1H", "1D"]
|
||
)
|
||
self.initial_date = OKX_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-07-01 00:00:00"
|
||
)
|
||
mysql_user = MYSQL_CONFIG.get("user", "xch")
|
||
mysql_password = MYSQL_CONFIG.get("password", "")
|
||
if not mysql_password:
|
||
raise ValueError("MySQL password is not set")
|
||
mysql_host = MYSQL_CONFIG.get("host", "localhost")
|
||
mysql_port = MYSQL_CONFIG.get("port", 3306)
|
||
mysql_database = MYSQL_CONFIG.get("database", "okx")
|
||
|
||
self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}"
|
||
self.db_market_data = DBMarketData(self.db_url)
|
||
self.trade_data_main = TradeDataMain()
|
||
self.is_us_stock = is_us_stock
|
||
|
||
def initial_data(self):
|
||
"""
|
||
初始化数据
|
||
"""
|
||
for symbol in self.symbols:
|
||
for bar in self.bars:
|
||
logger.info(f"开始初始化行情数据: {symbol} {bar}")
|
||
latest_data = self.db_market_data.query_latest_data(symbol, bar)
|
||
if latest_data:
|
||
start = latest_data.get("timestamp")
|
||
start_date_time = timestamp_to_datetime(start)
|
||
start = start + 1
|
||
else:
|
||
start = datetime_to_timestamp(self.initial_date)
|
||
start_date_time = self.initial_date
|
||
logger.info(
|
||
f"开始初始化{symbol}, {bar} 行情数据,从 {start_date_time} 开始"
|
||
)
|
||
self.fetch_save_data(symbol, bar, start)
|
||
|
||
def fetch_save_data(self, symbol: str, bar: str, start: str):
|
||
"""
|
||
获取保存数据
|
||
"""
|
||
end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
end_time_ts = transform_date_time_to_timestamp(end_time)
|
||
if end_time_ts is None:
|
||
logger.error(f"结束时间格式错误: {end_time}")
|
||
return None
|
||
|
||
start_time_ts = transform_date_time_to_timestamp(start)
|
||
if start_time_ts is None:
|
||
logger.error(f"开始时间格式错误: {start}")
|
||
return None
|
||
|
||
# 如果bar为5m, 15m, 30m:
|
||
# end_time_ts与start_time_ts相差超过1天,则按照1天为单位
|
||
# 如果bar为1H, 4H,
|
||
# end_time_ts与start_time_ts相差超过5天,则按照5天为单位
|
||
# 如果bar为1D, 则end_time_ts与start_time_ts相差超过10天,则按照10天为单位
|
||
# 获取数据,直到end_time_ts
|
||
threshold = None
|
||
if bar in ["5m", "15m", "30m", "1H"]:
|
||
if self.is_us_stock:
|
||
if bar == "5m":
|
||
threshold = 86400000 * 4
|
||
elif bar == "15m":
|
||
threshold = 86400000 * 6
|
||
elif bar == "30m":
|
||
threshold = 86400000 * 12
|
||
elif bar == "1H":
|
||
threshold = 86400000 * 24
|
||
else:
|
||
threshold = 86400000
|
||
elif bar in ["1H", "4H"]:
|
||
threshold = 432000000
|
||
elif bar == "1D":
|
||
threshold = 864000000
|
||
|
||
get_data = False
|
||
min_start_time_ts = start_time_ts
|
||
while start_time_ts < end_time_ts:
|
||
current_start_time_ts = int(end_time_ts - threshold)
|
||
if current_start_time_ts < start_time_ts:
|
||
current_start_time_ts = start_time_ts
|
||
start_date_time = timestamp_to_datetime(current_start_time_ts)
|
||
end_date_time = timestamp_to_datetime(end_time_ts)
|
||
logger.info(
|
||
f"获取行情数据: {symbol} {bar} 从 {start_date_time} 到 {end_date_time}"
|
||
)
|
||
if self.is_us_stock:
|
||
limit = 1000
|
||
else:
|
||
limit = 100
|
||
data = self.market_data.get_historical_kline_data(
|
||
symbol=symbol,
|
||
start=current_start_time_ts,
|
||
bar=bar,
|
||
end_time=end_time_ts,
|
||
limit=limit,
|
||
)
|
||
if data is not None and len(data) > 0:
|
||
data["buy_sz"] = -1
|
||
data["sell_sz"] = -1
|
||
|
||
if data is not None and len(data) > 0:
|
||
data = data[
|
||
[
|
||
"symbol",
|
||
"bar",
|
||
"timestamp",
|
||
"date_time",
|
||
"date_time_us",
|
||
"open",
|
||
"high",
|
||
"low",
|
||
"close",
|
||
"volume",
|
||
"volCcy",
|
||
"volCCyQuote",
|
||
"buy_sz",
|
||
"sell_sz",
|
||
"create_time",
|
||
]
|
||
]
|
||
data = self.add_new_columns(data)
|
||
self.db_market_data.insert_data_to_mysql(data)
|
||
current_min_start_time_ts = int(data["timestamp"].min())
|
||
if current_min_start_time_ts < min_start_time_ts:
|
||
min_start_time_ts = current_min_start_time_ts
|
||
|
||
get_data = True
|
||
else:
|
||
logger.warning(f"获取行情数据为空: {symbol} {bar} 从 {start_date_time} 到 {end_date_time}")
|
||
break
|
||
|
||
if current_start_time_ts == start_time_ts:
|
||
break
|
||
|
||
if current_min_start_time_ts < current_start_time_ts:
|
||
end_time_ts = current_min_start_time_ts
|
||
else:
|
||
end_time_ts = current_start_time_ts
|
||
if min_start_time_ts is not None and get_data:
|
||
# 补充技术指标数据
|
||
# 获得min_start_time_ts之前30条数据
|
||
logger.info(f"开始补充技术指标数据: {symbol} {bar}")
|
||
before_data = self.db_market_data.query_data_before_timestamp(
|
||
symbol, bar, min_start_time_ts, 30
|
||
)
|
||
latest_before_timestamp = None
|
||
if before_data is not None and len(before_data) > 0:
|
||
earliest_timestamp = before_data[-1]["timestamp"]
|
||
latest_before_timestamp = before_data[0]["timestamp"]
|
||
else:
|
||
earliest_timestamp = min_start_time_ts
|
||
handle_data = self.db_market_data.query_market_data_by_symbol_bar(
|
||
symbol=symbol, bar=bar, start=earliest_timestamp, end=None
|
||
)
|
||
if handle_data is not None:
|
||
if before_data is not None and len(handle_data) <= len(before_data):
|
||
logger.error(f"handle_data数据条数小于before_data数据条数: {symbol} {bar}")
|
||
return None
|
||
if isinstance(handle_data, list):
|
||
handle_data = pd.DataFrame(handle_data)
|
||
elif isinstance(handle_data, dict):
|
||
handle_data = pd.DataFrame([handle_data])
|
||
elif isinstance(handle_data, pd.DataFrame):
|
||
pass
|
||
else:
|
||
logger.error(f"handle_data类型错误: {type(handle_data)}")
|
||
return None
|
||
|
||
handle_data = self.calculate_metrics(handle_data)
|
||
if latest_before_timestamp is not None:
|
||
handle_data = handle_data[handle_data["timestamp"] > latest_before_timestamp]
|
||
handle_data.reset_index(drop=True, inplace=True)
|
||
logger.info(f"开始保存技术指标数据: {symbol} {bar}")
|
||
self.db_market_data.insert_data_to_mysql(handle_data)
|
||
return data
|
||
|
||
def add_new_columns(self, data: pd.DataFrame):
|
||
"""
|
||
添加新列
|
||
"""
|
||
columns = data.columns.tolist()
|
||
if "buy_sz" not in columns:
|
||
data["buy_sz"] = -1
|
||
if "sell_sz" not in columns:
|
||
data["sell_sz"] = -1
|
||
data["pre_close"] = None
|
||
data["close_change"] = None
|
||
data["pct_chg"] = None
|
||
data["ma1"] = None
|
||
data["ma2"] = None
|
||
data["dif"] = None
|
||
data["dea"] = None
|
||
data["macd"] = None
|
||
data["macd_signal"] = None
|
||
data["macd_divergence"] = None
|
||
data["kdj_k"] = None
|
||
data["kdj_d"] = None
|
||
data["kdj_j"] = None
|
||
data["kdj_signal"] = None
|
||
data["kdj_pattern"] = None
|
||
data["sar"] = None
|
||
data["sar_signal"] = None
|
||
data["ma5"] = None
|
||
data["ma10"] = None
|
||
data["ma20"] = None
|
||
data["ma30"] = None
|
||
data["ma_cross"] = None
|
||
data["ma5_close_diff"] = None
|
||
data["ma10_close_diff"] = None
|
||
data["ma20_close_diff"] = None
|
||
data["ma30_close_diff"] = None
|
||
data["ma_close_avg"] = None
|
||
data["ma_long_short"] = None
|
||
data["ma_divergence"] = None
|
||
data["rsi_14"] = None
|
||
data["rsi_signal"] = None
|
||
data["boll_upper"] = None
|
||
data["boll_middle"] = None
|
||
data["boll_lower"] = None
|
||
data["boll_signal"] = None
|
||
data["boll_pattern"] = None
|
||
data["k_length"] = None
|
||
data["k_shape"] = None
|
||
data["k_up_down"] = None
|
||
return data
|
||
|
||
def calculate_metrics(self, data: pd.DataFrame):
|
||
"""
|
||
计算技术指标
|
||
1. 计算前一日收盘价、涨跌幅、涨跌幅百分比
|
||
2. 计算MACD指标
|
||
3. 计算KDJ指标
|
||
4. 计算BOLL指标
|
||
5. 计算K线长度
|
||
6. 计算K线形状
|
||
7. 计算K线方向
|
||
pre_close DECIMAL(20,10) NULL,
|
||
close_change DECIMAL(20,10) NULL,
|
||
pct_chg DECIMAL(20,10) NULL,
|
||
ma1 DOUBLE DEFAULT NULL COMMENT '移动平均线1',
|
||
ma2 DOUBLE DEFAULT NULL COMMENT '移动平均线2',
|
||
dif DOUBLE DEFAULT NULL COMMENT 'MACD指标DIF线',
|
||
dea DOUBLE DEFAULT NULL COMMENT 'MACD指标DEA线',
|
||
macd DOUBLE DEFAULT NULL COMMENT 'MACD指标值',
|
||
macd_signal VARCHAR(15) DEFAULT NULL COMMENT 'MACD金叉死叉信号',
|
||
macd_divergence varchar(25) DEFAULT NULL COMMENT 'MACD背离,顶背离或底背离',
|
||
kdj_k DOUBLE DEFAULT NULL COMMENT 'KDJ指标K值',
|
||
kdj_d DOUBLE DEFAULT NULL COMMENT 'KDJ指标D值',
|
||
kdj_j DOUBLE DEFAULT NULL COMMENT 'KDJ指标J值',
|
||
kdj_signal VARCHAR(15) DEFAULT NULL COMMENT 'KDJ金叉死叉信号',
|
||
kdj_pattern varchar(25) DEFAULT NULL COMMENT 'KDJ超买,超卖,徘徊',
|
||
sar DOUBLE DEFAULT NULL COMMENT 'SAR指标',
|
||
sar_signal VARCHAR(15) DEFAULT NULL COMMENT 'SAR多头,SAR空头,SAR观望',
|
||
ma5 DOUBLE DEFAULT NULL COMMENT '5移动平均线',
|
||
ma10 DOUBLE DEFAULT NULL COMMENT '10移动平均线',
|
||
ma20 DOUBLE DEFAULT NULL COMMENT '20移动平均线',
|
||
ma30 DOUBLE DEFAULT NULL COMMENT '30移动平均线',
|
||
ma_cross VARCHAR(15) DEFAULT NULL COMMENT '均线交叉信号',
|
||
ma5_close_diff double DEFAULT NULL COMMENT '5移动平均线与收盘价差值',
|
||
ma10_close_diff double DEFAULT NULL COMMENT '10移动平均线与收盘价差值',
|
||
ma20_close_diff double DEFAULT NULL COMMENT '20移动平均线与收盘价差值',
|
||
ma30_close_diff double DEFAULT NULL COMMENT '30移动平均线与收盘价差值',
|
||
ma_close_avg double DEFAULT NULL COMMENT '收盘价移动平均值',
|
||
ma_long_short varchar(25) DEFAULT NULL COMMENT '均线多空',
|
||
ma_divergence varchar(25) DEFAULT NULL COMMENT '均线发散,均线粘合,均线适中,均线发散,均线超发散'
|
||
rsi_14 DOUBLE DEFAULT NULL COMMENT '14RSI指标',
|
||
rsi_signal VARCHAR(15) DEFAULT NULL COMMENT 'RSI强弱信号',
|
||
boll_upper DOUBLE DEFAULT NULL COMMENT '布林带上轨',
|
||
boll_middle DOUBLE DEFAULT NULL COMMENT '布林带中轨',
|
||
boll_lower DOUBLE DEFAULT NULL COMMENT '布林带下轨',
|
||
boll_signal VARCHAR(15) DEFAULT NULL COMMENT '布林带强弱信号',
|
||
boll_pattern varchar(25) DEFAULT NULL COMMENT 'BOLL超买,超卖,徘徊',
|
||
k_length varchar(25) DEFAULT NULL COMMENT 'K线长度',
|
||
k_shape varchar(25) DEFAULT NULL COMMENT 'K线形状',
|
||
k_up_down varchar(25) DEFAULT NULL COMMENT 'K线方向',
|
||
"""
|
||
data = data.sort_values(by="timestamp")
|
||
data = data.reset_index(drop=True)
|
||
|
||
metrics_calculation = MetricsCalculation()
|
||
data = metrics_calculation.pre_close(data)
|
||
data = metrics_calculation.macd(data)
|
||
data = metrics_calculation.kdj(data)
|
||
data = metrics_calculation.sar(data)
|
||
data = metrics_calculation.set_kdj_pattern(data)
|
||
data = metrics_calculation.update_macd_divergence_column_simple(data)
|
||
data = metrics_calculation.ma5102030(data)
|
||
data = metrics_calculation.calculate_ma_price_percent(data)
|
||
data = metrics_calculation.set_ma_long_short_divergence(data)
|
||
data = metrics_calculation.rsi(data)
|
||
data = metrics_calculation.boll(data)
|
||
data = metrics_calculation.set_boll_pattern(data)
|
||
data = metrics_calculation.set_k_length(data)
|
||
data = metrics_calculation.set_k_shape(data)
|
||
return data
|
||
|
||
def batch_update_data(self):
|
||
"""
|
||
更新数据
|
||
1. 获取最新数据
|
||
2. 获取最新数据的时间戳
|
||
3. 根据最新数据的时间戳,获取最新数据
|
||
4. 将最新数据保存到数据库
|
||
"""
|
||
for symbol in self.symbols:
|
||
for bar in self.bars:
|
||
self.update_data(symbol, bar)
|
||
|
||
def update_data(self, symbol: str, bar: str):
|
||
"""
|
||
更新数据
|
||
"""
|
||
logger.info(f"开始更新行情数据: {symbol} {bar}")
|
||
latest_data = self.db_market_data.query_latest_data(symbol, bar)
|
||
if not latest_data:
|
||
logger.info(f"{symbol}, {bar} 无数据,开始从{self.initial_date}初始化数据")
|
||
data = self.fetch_save_data(symbol, bar, self.initial_date)
|
||
else:
|
||
latest_timestamp = latest_data.get("timestamp")
|
||
if latest_timestamp:
|
||
latest_timestamp = int(latest_timestamp)
|
||
latest_date_time = timestamp_to_datetime(latest_timestamp)
|
||
logger.info(
|
||
f"{symbol}, {bar} 上次获取的最新数据时间: {latest_date_time}"
|
||
)
|
||
else:
|
||
logger.warning(f"获取{symbol}, {bar} 最新数据失败")
|
||
return
|
||
data = self.fetch_save_data(symbol, bar, latest_timestamp + 1)
|
||
return data
|
||
|
||
def batch_calculate_metrics(self):
|
||
"""
|
||
批量计算技术指标
|
||
"""
|
||
logger.info("开始批量计算技术指标")
|
||
start_date_time = OKX_MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-15 00:00:00"
|
||
)
|
||
start_timestamp = transform_date_time_to_timestamp(start_date_time)
|
||
current_date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
current_timestamp = transform_date_time_to_timestamp(current_date_time)
|
||
for symbol in self.symbols:
|
||
for bar in self.bars:
|
||
logger.info(f"开始计算技术指标: {symbol} {bar}")
|
||
data = self.db_market_data.query_market_data_by_symbol_bar(
|
||
symbol=symbol, bar=bar, start=start_timestamp - 1, end=current_timestamp
|
||
)
|
||
if data is not None and len(data) > 0:
|
||
data = pd.DataFrame(data)
|
||
data = self.calculate_metrics(data)
|
||
logger.info(f"开始保存技术指标数据: {symbol} {bar}")
|
||
self.db_market_data.insert_data_to_mysql(data)
|
||
|
||
def batch_ma_break_statistics(self):
|
||
"""
|
||
批量计算MA突破统计
|
||
"""
|
||
logger.info("开始批量计算MA突破统计")
|
||
self.ma_break_statistics.batch_statistics(all_change=False)
|
||
self.ma_break_statistics.batch_statistics(all_change=True)
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
market_data_main = MarketDataMain()
|
||
# market_data_main.batch_update_data()
|
||
# market_data_main.initial_data()
|
||
market_data_main.batch_calculate_metrics()
|
||
# market_data_main.batch_ma_break_statistics() |