crypto_quant/core/statistics/ma_break_statistics.py

295 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import core.logger as logging
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import re
from openpyxl import Workbook
from openpyxl.drawing.image import Image
import openpyxl
from openpyxl.styles import Font
from PIL import Image as PILImage
from config import MONITOR_CONFIG, MYSQL_CONFIG, WINDOW_SIZE
from core.db.db_market_data import DBMarketData
from core.db.db_huge_volume_data import DBHugeVolumeData
from core.utils import timestamp_to_datetime, transform_date_time_to_timestamp
# seaborn支持中文
plt.rcParams["font.family"] = ["SimHei"]
logger = logging.logger
class MaBreakStatistics:
"""
统计MA突破之后的涨跌幅
MA向上突破的点位周期K线5 > 10 > 20 > 30
统计MA向上突破的点位周期K线突破之后
下一个MA向下突破的点位周期K线30 > 20 > 10 > 5
之间的涨跌幅
"""
def __init__(self):
mysql_user = MYSQL_CONFIG.get("user", "xch")
mysql_password = MYSQL_CONFIG.get("password", "")
if not mysql_password:
raise ValueError("MySQL password is not set")
mysql_host = MYSQL_CONFIG.get("host", "localhost")
mysql_port = MYSQL_CONFIG.get("port", 3306)
mysql_database = MYSQL_CONFIG.get("database", "okx")
self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}"
self.db_market_data = DBMarketData(self.db_url)
self.db_huge_volume_data = DBHugeVolumeData(self.db_url)
self.symbols = MONITOR_CONFIG.get("volume_monitor", {}).get(
"symbols", ["XCH-USDT"]
)
self.bars = MONITOR_CONFIG.get("volume_monitor", {}).get(
"bars", ["5m", "15m", "30m", "1H"]
)
self.stats_output_dir = "./output/statistics/excel/"
os.makedirs(self.stats_output_dir, exist_ok=True)
self.stats_chart_dir = "./output/statistics/chart/"
os.makedirs(self.stats_chart_dir, exist_ok=True)
def batch_statistics(self, all_change: bool = True):
ma_break_market_data_list = []
for symbol in self.symbols:
for bar in self.bars:
logger.info(f"开始计算{symbol} {bar}的MA突破区间涨跌幅统计")
ma_break_market_data = self.statistics(symbol, bar, all_change)
if ma_break_market_data is not None:
ma_break_market_data_list.append(ma_break_market_data)
if len(ma_break_market_data_list) > 0:
ma_break_market_data = pd.concat(ma_break_market_data_list)
# 依据symbol和bar分组统计每个symbol和bar的pct_chg的max, min, mean, std, median, count
pct_chg_df = (ma_break_market_data
.groupby(['symbol', 'bar'])['pct_chg']
.agg(pct_chg_max='max',
pct_chg_min='min',
pct_chg_mean='mean',
pct_chg_std='std',
pct_chg_median='median',
pct_chg_count='count')
.reset_index())
# 依据symbol和bar分组统计每个symbol和bar的interval_minutes的max, min, mean, std, median, count
interval_minutes_df = (ma_break_market_data
.groupby(['symbol', 'bar'])['interval_minutes']
.agg(interval_minutes_max='max',
interval_minutes_min='min',
interval_minutes_mean='mean',
interval_minutes_std='std',
interval_minutes_median='median',
interval_minutes_count='count')
.reset_index())
earliest_market_date_time = ma_break_market_data["begin_date_time"].min()
earliest_market_date_time = re.sub(r"[\:\-\s]", "", str(earliest_market_date_time))
latest_market_date_time = ma_break_market_data["end_date_time"].max()
if latest_market_date_time is None:
latest_market_date_time = datetime.now().strftime("%Y%m%d")
latest_market_date_time = re.sub(r"[\:\-\s]", "", str(latest_market_date_time))
if all_change:
output_file_name = f"ma_break_stats_from_{earliest_market_date_time}_to_{latest_market_date_time}_完全转势.xlsx"
else:
output_file_name = f"ma_break_stats_from_{earliest_market_date_time}_to_{latest_market_date_time}_部分转势.xlsx"
output_file_path = os.path.join(self.stats_output_dir, output_file_name)
logger.info(f"导出{output_file_path}")
with pd.ExcelWriter(output_file_path) as writer:
ma_break_market_data.to_excel(writer, sheet_name="ma_break_market_data", index=False)
pct_chg_df.to_excel(writer, sheet_name="pct_chg_stats", index=False)
interval_minutes_df.to_excel(writer, sheet_name="interval_minutes_stats", index=False)
chart_dict = self.draw_pct_chg_mean_chart(pct_chg_df, all_change)
self.output_chart_to_excel(output_file_path, chart_dict)
else:
return None
def statistics(self, symbol: str, bar: str, all_change: bool = False):
market_data = self.db_market_data.query_market_data_by_symbol_bar(symbol, bar, start=None, end=None)
if market_data is None or len(market_data) == 0:
logger.warning(f"获取{symbol} {bar} 数据失败")
return
else:
market_data = pd.DataFrame(market_data)
market_data.sort_values(by="timestamp", ascending=True, inplace=True)
market_data.reset_index(drop=True, inplace=True)
logger.info(f"获取{symbol} {bar} 数据成功,数据条数: {len(market_data)}")
# 获得ma5, ma10, ma20, ma30不为空的行
market_data = market_data[(market_data["ma5"].notna()) &
(market_data["ma10"].notna()) &
(market_data["ma20"].notna()) &
(market_data["ma30"].notna())]
logger.info(f"ma5, ma10, ma20, ma30不为空的行数据条数: {len(market_data)}")
# 计算volume_ma5
market_data["volume_ma5"] = market_data["volume"].rolling(window=5).mean()
# 获得5上穿10且ma5 > ma10 > ma20 > ma30且close > ma20的行,成交量较前5日均量放大20%以上
market_data["volume_pct_chg"] = (market_data["volume"] - market_data["volume_ma5"]) / market_data["volume_ma5"]
market_data["volume_pct_chg"] = market_data["volume_pct_chg"].fillna(0)
if all_change:
long_market_data = market_data[(market_data["ma_cross"] == "5上穿10") & (market_data["ma5"] > market_data["ma10"]) &
(market_data["ma10"] > market_data["ma20"]) &
(market_data["ma20"] > market_data["ma30"]) &
(market_data["close"] > market_data["ma20"]) &
(market_data["volume_pct_chg"] > 0.2)]
logger.info(f"5上穿10, 且ma5 > ma10 > ma20 > ma30并且close > ma20并且成交量较前5日均量放大20%以上的行,数据条数: {len(long_market_data)}")
else:
long_market_data = market_data[(market_data["ma_cross"] == "5上穿10") & (market_data["ma5"] > market_data["ma10"]) &
(market_data["volume_pct_chg"] > 0.2)]
logger.info(f"5上穿10, 且ma5 > ma10并且成交量较前5日均量放大20%以上的行,数据条数: {len(long_market_data)}")
if len(long_market_data) == 0:
return None
if all_change:
# 获得ma5 < ma10 < ma20 < ma30的行
short_market_data = market_data[(market_data["ma5"] < market_data["ma10"]) &
(market_data["ma10"] < market_data["ma20"]) &
(market_data["ma20"] < market_data["ma30"])]
logger.info(f"ma5 < ma10 < ma20 < ma30的行数据条数: {len(short_market_data)}")
else:
# ma5 < ma10 or close < ma20
short_market_data = market_data[(market_data["ma5"] < market_data["ma10"]) |
(market_data["close"] < market_data["ma20"])]
logger.info(f"ma5 < ma10 or close < ma20的行数据条数: {len(short_market_data)}")
# concat long_market_data和short_market_data
ma_break_market_data = pd.concat([long_market_data, short_market_data])
# 按照timestamp排序
ma_break_market_data = ma_break_market_data.sort_values(by="timestamp", ascending=True)
# 获得ma_break_market_data的close列
ma_break_market_data.reset_index(drop=True, inplace=True)
ma_break_market_data_pair_list = []
ma_break_market_data_pair = {}
for index, row in ma_break_market_data.iterrows():
ma_cross = row["ma_cross"]
timestamp = row["timestamp"]
close = row["close"]
ma5 = row["ma5"]
ma10 = row["ma10"]
ma20 = row["ma20"]
ma30 = row["ma30"]
if pd.notna(ma_cross) and ma_cross is not None:
ma_cross = str(ma_cross)
buy_condition = False
if all_change:
buy_condition = (ma_cross == "5上穿10") and (ma5 > ma10 and ma10 > ma20 and ma20 > ma30) and (close > ma20)
else:
buy_condition = (ma_cross == "5上穿10") and (ma5 > ma10)
if buy_condition:
ma_break_market_data_pair = {}
ma_break_market_data_pair["symbol"] = symbol
ma_break_market_data_pair["bar"] = bar
ma_break_market_data_pair["begin_timestamp"] = timestamp
ma_break_market_data_pair["begin_date_time"] = timestamp_to_datetime(timestamp)
ma_break_market_data_pair["begin_close"] = close
ma_break_market_data_pair["begin_ma5"] = ma5
ma_break_market_data_pair["begin_ma10"] = ma10
ma_break_market_data_pair["begin_ma20"] = ma20
ma_break_market_data_pair["begin_ma30"] = ma30
if all_change:
change_condition = (ma5 < ma10 and ma10 < ma20 and ma20 < ma30)
else:
# change_condition = (ma5 < ma10 or ma10 < ma20 or ma20 < ma30)
change_condition = (ma5 < ma10) or (close < ma20)
if change_condition:
if ma_break_market_data_pair.get("begin_timestamp", None) is None:
continue
ma_break_market_data_pair["end_timestamp"] = timestamp
ma_break_market_data_pair["end_date_time"] = timestamp_to_datetime(timestamp)
ma_break_market_data_pair["end_close"] = close
ma_break_market_data_pair["end_ma5"] = ma5
ma_break_market_data_pair["end_ma10"] = ma10
ma_break_market_data_pair["end_ma20"] = ma20
ma_break_market_data_pair["end_ma30"] = ma30
ma_break_market_data_pair["pct_chg"] = (close - ma_break_market_data_pair["begin_close"]) / ma_break_market_data_pair["begin_close"]
ma_break_market_data_pair["pct_chg"] = round(ma_break_market_data_pair["pct_chg"] * 100, 4)
ma_break_market_data_pair["interval_seconds"] = (timestamp - ma_break_market_data_pair["begin_timestamp"]) / 1000
# 将interval转换为分钟
ma_break_market_data_pair["interval_minutes"] = ma_break_market_data_pair["interval_seconds"] / 60
ma_break_market_data_pair["interval_hours"] = ma_break_market_data_pair["interval_seconds"] / 3600
ma_break_market_data_pair["interval_days"] = ma_break_market_data_pair["interval_seconds"] / 86400
ma_break_market_data_pair_list.append(ma_break_market_data_pair)
ma_break_market_data_pair = {}
if len(ma_break_market_data_pair_list) > 0:
ma_break_market_data = pd.DataFrame(ma_break_market_data_pair_list)
return ma_break_market_data
else:
return None
def draw_pct_chg_mean_chart(self, data: pd.DataFrame, all_change: bool = True):
"""
绘制pct_chg mean的柱状图表美观保存到self.stats_chart_dir
:param data: 波段pct_chg_mean的数据
:return: None
"""
if data is None or data.empty:
return None
# seaborn风格设置
sns.set_theme(style="whitegrid")
plt.rcParams["font.sans-serif"] = ["SimHei"] # 也可直接用字体名
plt.rcParams["font.size"] = 11 # 设置字体大小
plt.rcParams["axes.unicode_minus"] = False # 解决负号显示问题
chart_dict = {}
for bar in data["bar"].unique():
bar_data = data[data["bar"] == bar].copy() # 一次筛选即可
if bar_data.empty:
continue
bar_data.rename(columns={"pct_chg_mean": "涨跌幅均值"}, inplace=True)
# 可选:按均值排序
bar_data.sort_values(by="涨跌幅均值", ascending=False, inplace=True)
bar_data.reset_index(drop=True, inplace=True)
plt.figure(figsize=(10, 6))
sns.barplot(x="symbol", y="涨跌幅均值", data=bar_data, palette="Blues_d")
plt.title(f"{bar}趋势涨跌幅均值分布")
plt.xlabel("symbol")
plt.ylabel("涨跌幅均值")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
if all_change:
save_path = os.path.join(self.stats_chart_dir, f"{bar}_ma_break_pct_chg_mean_all_change.png")
else:
save_path = os.path.join(self.stats_chart_dir, f"{bar}_ma_break_pct_chg_mean_part_change.png")
plt.savefig(save_path, dpi=150)
plt.close()
if all_change:
sheet_name = f"{bar}_趋势涨跌幅均值分布图表_完全转势"
else:
sheet_name = f"{bar}_趋势涨跌幅均值分布图表_部分转势"
chart_dict[sheet_name] = save_path
return chart_dict
def output_chart_to_excel(self, excel_file_path: str, charts_dict: dict):
"""
输出Excel文件包含所有图表
charts_dict: 图表数据字典,格式为:
{
"sheet_name": {
"chart_name": "chart_path"
}
}
"""
logger.info(f"将图表输出到{excel_file_path}")
# 打开已经存在的Excel文件
wb = openpyxl.load_workbook(excel_file_path)
for sheet_name, chart_path in charts_dict.items():
try:
ws = wb.create_sheet(title=sheet_name)
row_offset = 1
# Insert chart image
img = Image(chart_path)
ws.add_image(img, f"A{row_offset}")
except Exception as e:
logger.error(f"输出Excel Sheet {sheet_name} 失败: {e}")
continue
# Save Excel file
wb.save(excel_file_path)
print(f"Chart saved as {excel_file_path}")