517 lines
22 KiB
Python
517 lines
22 KiB
Python
from core.biz.huge_volume import HugeVolume
|
||
from core.biz.huge_volume_chart import HugeVolumeChart
|
||
from core.db.db_market_data import DBMarketData
|
||
from core.db.db_huge_volume_data import DBHugeVolumeData
|
||
from core.utils import timestamp_to_datetime, transform_date_time_to_timestamp
|
||
from market_data_main import MarketDataMain
|
||
from core.wechat import Wechat
|
||
import logging
|
||
from config import MONITOR_CONFIG, MYSQL_CONFIG, WINDOW_SIZE
|
||
from datetime import datetime, timedelta
|
||
import pandas as pd
|
||
import os
|
||
import re
|
||
|
||
logging.basicConfig(
|
||
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
||
)
|
||
|
||
|
||
class HugeVolumeMain:
|
||
def __init__(self, threshold: float = 2.0):
|
||
mysql_user = MYSQL_CONFIG.get("user", "xch")
|
||
mysql_password = MYSQL_CONFIG.get("password", "")
|
||
if not mysql_password:
|
||
raise ValueError("MySQL password is not set")
|
||
mysql_host = MYSQL_CONFIG.get("host", "localhost")
|
||
mysql_port = MYSQL_CONFIG.get("port", 3306)
|
||
mysql_database = MYSQL_CONFIG.get("database", "okx")
|
||
|
||
self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}"
|
||
self.huge_volume = HugeVolume()
|
||
self.db_market_data = DBMarketData(self.db_url)
|
||
self.db_huge_volume_data = DBHugeVolumeData(self.db_url)
|
||
self.market_data_main = MarketDataMain()
|
||
self.threshold = threshold
|
||
|
||
self.output_folder = "./output/huge_volume_statistics/"
|
||
os.makedirs(self.output_folder, exist_ok=True)
|
||
|
||
def batch_initial_detect_volume_spike(
|
||
self, window_size: int = 50, start: str = None
|
||
):
|
||
for symbol in self.market_data_main.symbols:
|
||
for bar in self.market_data_main.bars:
|
||
if start is None:
|
||
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-15 00:00:00"
|
||
)
|
||
data = self.detect_volume_spike(
|
||
symbol,
|
||
bar,
|
||
window_size,
|
||
start,
|
||
only_output_huge_volume=False,
|
||
is_update=False,
|
||
)
|
||
if data is not None and len(data) > 0:
|
||
logging.info(f"此次初始化巨量交易数据: {len(data)}条")
|
||
else:
|
||
logging.info(f"此次初始化巨量交易数据为空")
|
||
|
||
def detect_volume_spike(
|
||
self,
|
||
symbol: str = "XCH-USDT",
|
||
bar: str = "5m",
|
||
window_size: int = 50,
|
||
start: str = "2025-05-01 00:00:00",
|
||
end: str = None,
|
||
only_output_huge_volume: bool = False,
|
||
is_update: bool = False,
|
||
):
|
||
if start is None:
|
||
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-01 00:00:00"
|
||
)
|
||
if end is None:
|
||
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
logging.info(
|
||
f"开始处理巨量交易数据: {symbol} {bar} 窗口大小: {window_size} 从 {start} 到 {end}"
|
||
)
|
||
data = self.db_market_data.query_market_data_by_symbol_bar(
|
||
symbol, bar, start, end
|
||
)
|
||
if data is None:
|
||
logging.warning(
|
||
f"获取行情数据失败: {symbol} {bar} 窗口大小: {window_size} 从 {start} 到 {end}"
|
||
)
|
||
return None
|
||
else:
|
||
if len(data) == 0:
|
||
logging.warning(
|
||
f"获取行情数据为空: {symbol} {bar} 窗口大小: {window_size} 从 {start} 到 {end}"
|
||
)
|
||
return None
|
||
else:
|
||
if isinstance(data, list):
|
||
data = pd.DataFrame(data)
|
||
elif isinstance(data, dict):
|
||
data = pd.DataFrame([data])
|
||
data = self.huge_volume.detect_huge_volume(
|
||
data=data,
|
||
window_size=window_size,
|
||
threshold=self.threshold,
|
||
check_price=True,
|
||
only_output_huge_volume=only_output_huge_volume,
|
||
output_excel=False,
|
||
)
|
||
if data is not None:
|
||
if is_update:
|
||
for index, row in data.iterrows():
|
||
exist_huge_volume_data = self.db_huge_volume_data.query_data_by_symbol_bar_window_size_timestamp(
|
||
symbol, bar, window_size, row["timestamp"]
|
||
)
|
||
if exist_huge_volume_data is not None:
|
||
# remove the exist_huge_volume_data from data
|
||
data = data[
|
||
data["timestamp"] != exist_huge_volume_data["timestamp"]
|
||
]
|
||
if data is not None and len(data) > 0:
|
||
self.db_huge_volume_data.insert_data_to_mysql(data)
|
||
else:
|
||
logging.warning(
|
||
f"此次处理巨量交易数据为空: {symbol} {bar} {start} {end}"
|
||
)
|
||
return data
|
||
else:
|
||
return None
|
||
|
||
def batch_update_volume_spike(self, window_size: int = 50):
|
||
for symbol in self.market_data_main.symbols:
|
||
for bar in self.market_data_main.bars:
|
||
self.update_volume_spike(symbol, bar, window_size)
|
||
|
||
def update_volume_spike(self, symbol: str, bar: str, window_size: int = 50):
|
||
try:
|
||
self.market_data_main.update_data(symbol, bar)
|
||
latest_huge_volume_data = self.db_huge_volume_data.query_latest_data(
|
||
symbol, bar, window_size
|
||
)
|
||
if latest_huge_volume_data is None or len(latest_huge_volume_data) == 0:
|
||
self.detect_volume_spike(
|
||
symbol=symbol,
|
||
bar=bar,
|
||
window_size=window_size,
|
||
only_output_huge_volume=False,
|
||
)
|
||
return
|
||
else:
|
||
earliest_date_time = latest_huge_volume_data["date_time"]
|
||
earliest_timestamp = latest_huge_volume_data["timestamp"]
|
||
seconds = self.get_seconds_by_bar(bar)
|
||
earliest_timestamp = earliest_timestamp - (
|
||
(window_size - 1) * seconds * 1000
|
||
)
|
||
earliest_date_time = timestamp_to_datetime(earliest_timestamp)
|
||
|
||
data = self.detect_volume_spike(
|
||
symbol=symbol,
|
||
bar=bar,
|
||
window_size=window_size,
|
||
start=earliest_date_time,
|
||
only_output_huge_volume=False,
|
||
is_update=True,
|
||
)
|
||
logging.info(
|
||
f"更新巨量交易数据: {symbol} {bar} 窗口大小: {window_size} 从 {earliest_date_time} 到 {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||
)
|
||
if data is not None and len(data) > 0:
|
||
logging.info(f"此次更新巨量交易数据: {len(data)}条")
|
||
else:
|
||
logging.info(f"此次更新巨量交易数据为空")
|
||
except Exception as e:
|
||
logging.error(
|
||
f"更新巨量交易数据失败: {symbol} {bar} 窗口大小: {window_size} 从 {earliest_date_time} 到 {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: {e}"
|
||
)
|
||
|
||
def get_seconds_by_bar(self, bar: str):
|
||
"""
|
||
根据bar获取秒数
|
||
bar: 1s/1m/3m/5m/15m/30m/1H/2H/4H/6H/12H/1D/2D/3D/1W/1M/3M
|
||
:param bar: 时间周期
|
||
:return: 秒数
|
||
"""
|
||
if bar == "1s":
|
||
return 1
|
||
elif bar == "1m":
|
||
return 60
|
||
elif bar == "3m":
|
||
return 180
|
||
elif bar == "5m":
|
||
return 300
|
||
elif bar == "15m":
|
||
return 900
|
||
elif bar == "30m":
|
||
return 1800
|
||
elif bar == "1H":
|
||
return 3600
|
||
elif bar == "2H":
|
||
return 7200
|
||
elif bar == "4H":
|
||
return 14400
|
||
elif bar == "6H":
|
||
return 21600
|
||
elif bar == "12H":
|
||
return 43200
|
||
elif bar == "1D":
|
||
return 86400
|
||
elif bar == "2D":
|
||
return 172800
|
||
elif bar == "3D":
|
||
return 259200
|
||
elif bar == "1W":
|
||
return 604800
|
||
elif bar == "1M":
|
||
return 2592000
|
||
elif bar == "3M":
|
||
return 7776000
|
||
else:
|
||
raise ValueError(f"不支持的bar: {bar}")
|
||
|
||
def next_periods_rise_or_fall(
|
||
self,
|
||
symbol: str,
|
||
bar: str,
|
||
window_size: int = 50,
|
||
start: str = None,
|
||
end: str = None,
|
||
periods: list = [3, 5],
|
||
):
|
||
if start is None:
|
||
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-01 00:00:00"
|
||
)
|
||
if end is None:
|
||
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
periods_text = ", ".join([str(period) for period in periods])
|
||
logging.info(
|
||
f"开始计算巨量出现后,之后{periods_text}个周期,上涨或下跌的比例: {symbol} {bar} 窗口大小: {window_size} 从 {start} 到 {end}"
|
||
)
|
||
volume_statistics_data = (
|
||
self.db_huge_volume_data.query_huge_volume_data_by_symbol_bar_window_size(
|
||
symbol, bar, window_size, start, end
|
||
)
|
||
)
|
||
if volume_statistics_data is None or len(volume_statistics_data) == 0:
|
||
logging.warning(
|
||
f"获取巨量交易数据为空: {symbol} {bar} 窗口大小: {window_size} 从 {start} 到 {end}"
|
||
)
|
||
return None
|
||
else:
|
||
if isinstance(volume_statistics_data, list):
|
||
volume_statistics_data = pd.DataFrame(volume_statistics_data)
|
||
elif isinstance(volume_statistics_data, dict):
|
||
volume_statistics_data = pd.DataFrame([volume_statistics_data])
|
||
if volume_statistics_data is not None and len(volume_statistics_data) > 0:
|
||
# 根据timestamp排序
|
||
volume_statistics_data = volume_statistics_data.sort_values(
|
||
by="timestamp", ascending=True
|
||
)
|
||
volume_statistics_data["window_size"] = window_size
|
||
volume_statistics_data = volume_statistics_data[
|
||
[
|
||
"symbol",
|
||
"bar",
|
||
"window_size",
|
||
"timestamp",
|
||
"date_time",
|
||
"open",
|
||
"high",
|
||
"low",
|
||
"close",
|
||
"volume",
|
||
"huge_volume",
|
||
"volume_ratio",
|
||
"volume_80_20_price_spike",
|
||
"price_80_high",
|
||
"price_20_low",
|
||
"volume_90_10_price_spike",
|
||
"price_90_high",
|
||
"price_10_low",
|
||
]
|
||
]
|
||
volume_statistics_data = volume_statistics_data.reset_index(drop=True)
|
||
huge_volume_data, result_data = self.huge_volume.next_periods_rise_or_fall(
|
||
data=volume_statistics_data, window_size=window_size, periods=periods
|
||
)
|
||
return huge_volume_data, result_data
|
||
|
||
def send_huge_volume_data_to_wechat(self, start: str = None, end: str = None):
|
||
if start is None:
|
||
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-01 00:00:00"
|
||
)
|
||
if end is None:
|
||
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
|
||
start_timestamp = transform_date_time_to_timestamp(start)
|
||
end_timestamp = transform_date_time_to_timestamp(end)
|
||
|
||
start_date_time = timestamp_to_datetime(start_timestamp)
|
||
end_date_time = timestamp_to_datetime(end_timestamp)
|
||
logging.info(f"开始获取巨量交易数据: {start} 到 {end}")
|
||
huge_volume_data = self.db_huge_volume_data.query_huge_volume_records(
|
||
start=start_timestamp, end=end_timestamp
|
||
)
|
||
if huge_volume_data is None or len(huge_volume_data) == 0:
|
||
logging.warning(f"获取巨量交易数据为空: {start} 到 {end}")
|
||
return
|
||
else:
|
||
if isinstance(huge_volume_data, list):
|
||
huge_volume_data = pd.DataFrame(huge_volume_data)
|
||
else:
|
||
huge_volume_data = pd.DataFrame([huge_volume_data])
|
||
# 过滤huge_volume_data,要求huge_volume为1,且(price_80_high == 1 or price_90_high == 1 or price_20_low == 1 or price_10_low == 1)
|
||
huge_volume_data = huge_volume_data[huge_volume_data["huge_volume"] == 1]
|
||
# 过滤huge_volume_data,要求(price_80_high == 1 or price_90_high == 1 or price_20_low == 1 or price_10_low == 1)
|
||
huge_volume_data = huge_volume_data[
|
||
(huge_volume_data["price_90_high"] == 1)
|
||
| (huge_volume_data["price_10_low"] == 1)
|
||
]
|
||
# 过滤huge_volume_data,要求volume_ratio > 10
|
||
huge_volume_data = huge_volume_data[huge_volume_data["volume_ratio"] > 10]
|
||
# 根据symbol, bar, window_size, timestamp排序
|
||
huge_volume_data = huge_volume_data.sort_values(
|
||
by=["symbol", "bar", "window_size", "timestamp"], ascending=True
|
||
)
|
||
huge_volume_data = huge_volume_data.reset_index(drop=True)
|
||
logging.info(f"获取巨量交易数据: {len(huge_volume_data)}条")
|
||
contents = []
|
||
contents.append(f"# 放量交易数据: {start_date_time} 到 {end_date_time}")
|
||
symbol_list = huge_volume_data["symbol"].unique()
|
||
# 根据symbol_list排序
|
||
symbol_list.sort()
|
||
for symbol in symbol_list:
|
||
contents = []
|
||
contents.append(f"# 放量交易数据: {start_date_time} 到 {end_date_time}")
|
||
contents.append(f"## 币种: {symbol}")
|
||
symbol_data = huge_volume_data[huge_volume_data["symbol"] == symbol]
|
||
symbol_data = symbol_data.sort_values(
|
||
by=["bar", "window_size", "timestamp"], ascending=True
|
||
)
|
||
symbol_data = symbol_data.reset_index(drop=True)
|
||
for index, row in symbol_data.iterrows():
|
||
if row["huge_volume"] == 1 and (
|
||
row["price_80_high"] == 1
|
||
or row["price_90_high"] == 1
|
||
or row["price_20_low"] == 1
|
||
or row["price_10_low"] == 1
|
||
):
|
||
if row["price_90_high"] == 1:
|
||
price_position_text = "90%分位数高点"
|
||
elif row["price_80_high"] == 1:
|
||
price_position_text = "80%分位数高点"
|
||
else:
|
||
price_position_text = ""
|
||
|
||
if price_position_text == "":
|
||
if row["price_10_low"] == 1:
|
||
price_position_text = "10%分位数低点"
|
||
elif row["price_20_low"] == 1:
|
||
price_position_text = "20%分位数低点"
|
||
else:
|
||
price_position_text = ""
|
||
open_price = str(round(row["open"], 6))
|
||
high = str(round(row["high"], 6))
|
||
low = str(round(row["low"], 6))
|
||
close = str(round(row["close"], 6))
|
||
volume = str(round(row["volume"], 6))
|
||
volCCyQuote = str(round(row["volCCyQuote"], 6))
|
||
volume_ratio = str(round(row["volume_ratio"], 6))
|
||
contents.append(
|
||
f"交易周期: {row['bar']}, 滑动窗口: {row['window_size']} , 发生时间: {row['date_time']}"
|
||
)
|
||
contents.append(
|
||
f"开盘价: {open_price}, 最高价: {high}, 最低价: {low}, 收盘价: {close}"
|
||
)
|
||
contents.append(
|
||
f"成交量: {volume}, 成交量USDT: {volCCyQuote}, 交易量比率: {volume_ratio}"
|
||
)
|
||
contents.append(f"价格分位: {price_position_text}")
|
||
contents.append(f"--------------------------------")
|
||
text = "\n\n".join(contents)
|
||
# 获得text的字节数
|
||
text_length = len(text.encode("utf-8"))
|
||
|
||
logging.info(f"发送巨量交易数据到微信,字节数: {text_length}")
|
||
# with open(os.path.join(self.output_folder, "huge_volume_data.md"), "w", encoding="utf-8") as f:
|
||
# f.write(text)
|
||
wechat = Wechat()
|
||
wechat.send_markdown(text)
|
||
|
||
def batch_next_periods_rise_or_fall(
|
||
self,
|
||
start: str = None,
|
||
end: str = None,
|
||
next_periods: list = [1, 2, 3, 5, 10],
|
||
output_excel: bool = False,
|
||
):
|
||
if start is None:
|
||
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-01 00:00:00"
|
||
)
|
||
if end is None:
|
||
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
huge_volume_data_list = []
|
||
result_data_list = []
|
||
window_size_list = WINDOW_SIZE.get("window_sizes", None)
|
||
if (
|
||
window_size_list is None
|
||
or not isinstance(window_size_list, list)
|
||
or len(window_size_list) == 0
|
||
):
|
||
window_size_list = [50, 80, 100, 120]
|
||
|
||
for symbol in self.market_data_main.symbols:
|
||
for bar in self.market_data_main.bars:
|
||
for window_size in window_size_list:
|
||
huge_volume_data, result_data = self.next_periods_rise_or_fall(
|
||
symbol, bar, window_size, start, end, next_periods
|
||
)
|
||
huge_volume_data_list.append(huge_volume_data)
|
||
result_data_list.append(result_data)
|
||
total_huge_volume_data = pd.concat(huge_volume_data_list)
|
||
total_result_data = pd.concat(result_data_list)
|
||
if output_excel:
|
||
total_huge_volume_data = total_huge_volume_data.reset_index(drop=True)
|
||
total_result_data = total_result_data.reset_index(drop=True)
|
||
current_date = datetime.now().strftime("%Y%m%d%H%M%S")
|
||
file_name = f"next_periods_rise_or_fall_{current_date}.xlsx"
|
||
try:
|
||
with pd.ExcelWriter(
|
||
os.path.join(self.output_folder, file_name)
|
||
) as writer:
|
||
total_huge_volume_data.to_excel(
|
||
writer, sheet_name="details", index=False
|
||
)
|
||
total_result_data.to_excel(
|
||
writer, sheet_name="next_periods_statistics", index=False
|
||
)
|
||
except Exception as e:
|
||
logging.error(f"导出Excel文件失败: {e}")
|
||
return total_huge_volume_data, total_result_data
|
||
|
||
def plot_huge_volume_data(
|
||
self,
|
||
data_file_path: str,
|
||
sheet_name: str = "next_periods_statistics",
|
||
output_folder: str = "./output/huge_volume_statistics/",
|
||
):
|
||
os.makedirs(output_folder, exist_ok=True)
|
||
huge_volume_data = pd.read_excel(data_file_path, sheet_name=sheet_name)
|
||
huge_volume_chart = HugeVolumeChart(huge_volume_data)
|
||
include_heatmap = True
|
||
include_line = False
|
||
huge_volume_chart.plot_entrance(
|
||
include_heatmap=include_heatmap, include_line=include_line
|
||
)
|
||
|
||
|
||
def batch_initial_detect_volume_spike(threshold: float = 2.0):
|
||
window_sizes = WINDOW_SIZE.get("window_sizes", None)
|
||
if (
|
||
window_sizes is None
|
||
or not isinstance(window_sizes, list)
|
||
or len(window_sizes) == 0
|
||
):
|
||
window_sizes = [50, 80, 100, 120]
|
||
huge_volume_main = HugeVolumeMain(threshold)
|
||
start_date = MONITOR_CONFIG.get("volume_monitor", {}).get(
|
||
"initial_date", "2025-05-15 00:00:00"
|
||
)
|
||
for window_size in window_sizes:
|
||
huge_volume_main.batch_initial_detect_volume_spike(
|
||
window_size=window_size,
|
||
start=start_date,
|
||
)
|
||
|
||
|
||
def batch_update_volume_spike(threshold: float = 2.0):
|
||
window_sizes = WINDOW_SIZE.get("window_sizes", None)
|
||
if (
|
||
window_sizes is None
|
||
or not isinstance(window_sizes, list)
|
||
or len(window_sizes) == 0
|
||
):
|
||
window_sizes = [50, 80, 100, 120]
|
||
huge_volume_main = HugeVolumeMain(threshold)
|
||
for window_size in window_sizes:
|
||
huge_volume_main.batch_update_volume_spike(window_size=window_size)
|
||
|
||
|
||
def test_send_huge_volume_data_to_wechat():
|
||
huge_volume_main = HugeVolumeMain(threshold=2.0)
|
||
# 获得昨天日期
|
||
yesterday = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d")
|
||
logging.info(f"昨天日期: {yesterday}")
|
||
# 获得今天日期
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
logging.info(f"今天日期: {today}")
|
||
huge_volume_main.send_huge_volume_data_to_wechat(start=yesterday, end=today)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# test_send_huge_volume_data_to_wechat()
|
||
# batch_initial_detect_volume_spike(threshold=2.0)
|
||
batch_update_volume_spike(threshold=2.0)
|
||
# huge_volume_main = HugeVolumeMain(threshold=2.0)
|
||
# huge_volume_main.batch_next_periods_rise_or_fall(output_excel=True)
|
||
# data_file_path = "./output/huge_volume_statistics/next_periods_rise_or_fall_stat_20250731200304.xlsx"
|
||
# sheet_name = "next_periods_statistics"
|
||
# output_folder = "./output/huge_volume_statistics/"
|
||
# huge_volume_main.plot_huge_volume_data(
|
||
# data_file_path=data_file_path,
|
||
# sheet_name=sheet_name,
|
||
# output_folder=output_folder,
|
||
# )
|