diff --git a/core/biz/__pycache__/huge_volume.cpython-312.pyc b/core/biz/__pycache__/huge_volume.cpython-312.pyc index 8f72f6f..95af9d0 100644 Binary files a/core/biz/__pycache__/huge_volume.cpython-312.pyc and b/core/biz/__pycache__/huge_volume.cpython-312.pyc differ diff --git a/core/biz/__pycache__/market_data.cpython-312.pyc b/core/biz/__pycache__/market_data.cpython-312.pyc new file mode 100644 index 0000000..8ab8bbe Binary files /dev/null and b/core/biz/__pycache__/market_data.cpython-312.pyc differ diff --git a/core/biz/huge_volume.py b/core/biz/huge_volume.py index e7ee399..5a27ef3 100644 --- a/core/biz/huge_volume.py +++ b/core/biz/huge_volume.py @@ -20,7 +20,8 @@ class HugeVolume: def _calculate_percentile_indicators( self, data: pd.DataFrame, - window_size: int, + window_size: int = 50, + price_column: str = "close", percentiles: List[Tuple[float, str]] = [(0.8, "80"), (0.2, "20"), (0.9, "90"), (0.1, "10")] ) -> pd.DataFrame: """ @@ -32,44 +33,24 @@ class HugeVolume: """ for percentile, suffix in percentiles: # 计算分位数 - data[f"close_{suffix}_percentile"] = ( - data["close"].rolling(window=window_size, min_periods=1).quantile(percentile) + data[f"{price_column}_{suffix}_percentile"] = ( + data[price_column].rolling(window=window_size, min_periods=1).quantile(percentile) ) # 判断价格是否达到分位数 if suffix in ["80", "90"]: # 高点分位数 - data[f"price_{suffix}_high"] = ( - data["close"] >= data[f"close_{suffix}_percentile"] + data[f"{price_column}_{suffix}_high"] = ( + data[price_column] >= data[f"{price_column}_{suffix}_percentile"] ).astype(int) else: # 低点分位数 - data[f"price_{suffix}_low"] = ( - data["close"] <= data[f"close_{suffix}_percentile"] + data[f"{price_column}_{suffix}_low"] = ( + data[price_column] <= data[f"{price_column}_{suffix}_percentile"] ).astype(int) return data - def _calculate_volume_price_spikes(self, data: pd.DataFrame) -> pd.DataFrame: - """ - 计算量价尖峰指标 - :param data: 数据DataFrame - :return: 包含量价尖峰指标的DataFrame - """ - # 80/20量价尖峰 - data["volume_80_20_price_spike"] = ( - (data["huge_volume"] == 1) - & ((data["price_80_high"] == 1) | (data["price_20_low"] == 1)) - ).astype(int) - - # 90/10量价尖峰 - data["volume_90_10_price_spike"] = ( - (data["huge_volume"] == 1) - & ((data["price_90_high"] == 1) | (data["price_10_low"] == 1)) - ).astype(int) - - return data - def detect_huge_volume( self, data: DataFrame, @@ -136,12 +117,17 @@ class HugeVolume: if "close" not in data.columns: logging.error("数据中缺少close列,无法进行价格检查") return data + if "high" not in data.columns: + logging.error("数据中缺少high列,无法进行价格检查") + return data + if "low" not in data.columns: + logging.error("数据中缺少low列,无法进行价格检查") + return data - # 计算分位数指标(80/20和90/10) - data = self._calculate_percentile_indicators(data, window_size) + for price_column in ["close", "high", "low"]: + # 计算分位数指标(80/20和90/10) + data = self._calculate_percentile_indicators(data, window_size, price_column) - # 计算量价尖峰指标 - data = self._calculate_volume_price_spikes(data) if only_output_huge_volume: data = data[(data["huge_volume"] == 1)] diff --git a/core/biz/market_data_monitor.py b/core/biz/market_data.py similarity index 69% rename from core/biz/market_data_monitor.py rename to core/biz/market_data.py index 2ddcdea..08a2555 100644 --- a/core/biz/market_data_monitor.py +++ b/core/biz/market_data.py @@ -8,7 +8,7 @@ import okx.TradingData as TradingData from core.utils import transform_date_time_to_timestamp logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s') -class MarketDataMonitor: +class MarketData: def __init__(self, api_key: str, secret_key: str, @@ -23,8 +23,55 @@ class MarketDataMonitor: api_key=api_key, api_secret_key=secret_key, passphrase=passphrase, flag=flag ) + + def get_realtime_kline_data(self, symbol: str = None, bar: str = '5m', end_time: int = None, limit: int = 50) -> Optional[pd.DataFrame]: + """ + 获取实时K线数据 + """ + if symbol is None: + symbol = "XCH-USDT" + if bar is None: + bar = "5m" + + if end_time is None: + end_time = int(time.time() * 1000) # 当前时间(毫秒) + else: + end_time = transform_date_time_to_timestamp(end_time) + if end_time is None: + logging.error(f"end_time参数解析失败: {end_time}") + return None + response = self.get_realtime_candlesticks_from_api(symbol, bar, end_time, limit) + if response: + candles = response["data"] + from_time = int(candles[-1][0]) + to_time = int(candles[0][0]) + from_time_str = pd.to_datetime(from_time, unit='ms', utc=True).tz_convert('Asia/Shanghai') + to_time_str = pd.to_datetime(to_time, unit='ms', utc=True).tz_convert('Asia/Shanghai') + logging.info(f"已获取{symbol}, 周期:{bar} {len(candles)} 条数据,从: {from_time_str} 到: {to_time_str}") + columns = ["timestamp", "open", "high", "low", "close", "volume", "volCcy", "volCCyQuote", "confirm"] + candles_pd = pd.DataFrame(candles, columns=columns) + for col in ['open', 'high', 'low', 'close', 'volume', 'volCcy', 'volCCyQuote']: + candles_pd[col] = pd.to_numeric(candles_pd[col], errors='coerce') + dt_series = pd.to_datetime(candles_pd['timestamp'].astype(int), unit='ms', utc=True, errors='coerce').dt.tz_convert('Asia/Shanghai') + candles_pd['date_time'] = dt_series.dt.strftime('%Y-%m-%d %H:%M:%S') + # 将timestamp转换为整型 + candles_pd['timestamp'] = candles_pd['timestamp'].astype(int) + # 添加虚拟货币名称列,内容为symbol + candles_pd['symbol'] = symbol + # 添加bar列,内容为bar + candles_pd['bar'] = bar + candles_pd['create_time'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S') + candles_pd = candles_pd[['symbol', 'bar', 'timestamp', 'date_time', 'open', 'high', 'low', 'close', 'volume', 'volCcy', 'volCCyQuote', 'create_time']] + candles_pd.sort_values('timestamp', inplace=True) + candles_pd.reset_index(drop=True, inplace=True) + + return candles_pd + else: + logging.warning(f"未获取到{symbol}, {bar} 最新数据,请稍后再试") + return None + - def get_historical_kline_data(self, symbol: str = None, start: str = None, bar: str = '1m', limit: int = 100, end_time: int = None) -> Optional[pd.DataFrame]: + def get_historical_kline_data(self, symbol: str = None, start: str = None, bar: str = '5m', limit: int = 100, end_time: int = None) -> Optional[pd.DataFrame]: """ 获取历史K线数据,支持start为北京时间字符串(%Y-%m-%d %H:%M:%S)或UTC毫秒级时间戳 :param symbol: 交易对 @@ -56,7 +103,7 @@ class MarketDataMonitor: while start_time < end_time: try: # after,真实逻辑是获得指定时间之前的数据 !!! - response = self.get_candlesticks_from_api(symbol, end_time, bar, limit) + response = self.get_historical_candlesticks_from_api(symbol, bar, end_time, limit) if response is None: logging.warning(f"请求失败,请稍后再试") break @@ -151,15 +198,15 @@ class MarketDataMonitor: df.loc[index, "sell_sz"] = sell_sz return df - def get_candlesticks_from_api(self, symbol, end_time, bar, limit): + def get_historical_candlesticks_from_api(self, symbol, bar, end_time, limit): response = None count = 0 while True: try: response = self.market_api.get_history_candlesticks( instId=symbol, - after=end_time, # 获取指定时间之前的数据, bar=bar, + after=end_time, # 获取指定时间之前的数据, limit=str(limit) ) if response: @@ -172,6 +219,27 @@ class MarketDataMonitor: time.sleep(10) return response + def get_realtime_candlesticks_from_api(self, symbol, bar, end_time, limit): + response = None + count = 0 + while True: + try: + response = self.market_api.get_candlesticks( + instId=symbol, + bar=bar, + after=end_time, + limit=str(limit) + ) + if response: + break + except Exception as e: + logging.error(f"请求出错: {e}") + count += 1 + if count > 3: + break + time.sleep(10) + return response + def get_data_from_db(self, symbol, bar, db_url): sql = """ SELECT * FROM crypto_market_data diff --git a/core/biz/market_monitor.py b/core/biz/market_monitor.py new file mode 100644 index 0000000..c25f22c --- /dev/null +++ b/core/biz/market_monitor.py @@ -0,0 +1,249 @@ +import pandas as pd +import numpy as np +from metrics_config import METRICS_CONFIG +from time import time + +import logging + +logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s") + + +def create_metrics_report(row: pd.Series, only_output_rise: bool = False): + """ + 创建指标报告 + """ + contents = [] + huge_volume = row["huge_volume"] + symbol = row["symbol"] + bar = row["bar"] + window_size = row["window_size"] + date_time = row["date_time"] + if huge_volume == 1: + logging.info( + f"symbol: {symbol} {bar} window_size: {window_size} date_time: {date_time} 巨量" + ) + else: + logging.info( + f"symbol: {symbol} {bar} window_size: {window_size} date_time: {date_time} 非巨量,此次不发送相关数据" + ) + return + + # fill -1 to nan + row = row.fillna(1) + + close = row["close"] + open = row["open"] + high = row["high"] + low = row["low"] + pct_chg = row["pct_chg"] + if only_output_rise and pct_chg < 0: + logging.info( + f"symbol: {symbol} {bar} window_size: {window_size} date_time: {date_time} 下跌,不发送相关数据" + ) + return + + contents.append(f"# 交易巨量报告") + contents.append(f"## {symbol} {bar} 滑动窗口: {window_size} 时间: {date_time}") + contents.append(f"### 价格信息") + contents.append(f"当前价格: {close}, 开盘价: {open}, 最高价: {high}, 最低价: {low}") + contents.append(f"涨跌幅: {pct_chg}") + + volume = row["volume"] + volCcy = row["volCcy"] + volCCyQuote = row["volCCyQuote"] + volume_ratio = row["volume_ratio"] + spike_intensity = row["spike_intensity"] + close_80_high = int(row["close_80_high"]) + close_20_low = int(row["close_20_low"]) + close_90_high = int(row["close_90_high"]) + close_10_low = int(row["close_10_low"]) + high_80_high = int(row["high_80_high"]) + high_90_high = int(row["high_90_high"]) + low_20_low = int(row["low_20_low"]) + low_10_low = int(row["low_10_low"]) + + contents.append(f"### 交易量信息") + contents.append( + f"交易量(张): {volume}, 交易量(币): {volCcy}, 交易量(货币): {volCCyQuote}" + ) + contents.append(f"交易量比率: {volume_ratio}, 尖峰强度: {spike_intensity}") + if close_90_high: + contents.append(f"当前价格处于滑动窗口期90%分位数高点") + elif close_80_high: + contents.append(f"当前价格处于滑动窗口期80%分位数高点") + elif close_20_low: + contents.append(f"当前价格处于滑动窗口期20%分位数低点") + elif close_10_low: + contents.append(f"当前价格处于滑动窗口期10%分位数低点") + + long_short_info = {"多": [], "空": []} + ma_long_short = str(row["ma_long_short"]) + ma_long_short_value = METRICS_CONFIG.get("ma_long_short", {}).get(ma_long_short, 1) + if ma_long_short_value > 1: + long_short_info["多"].append(f"均线势头: {ma_long_short}") + if ma_long_short_value < 1: + long_short_info["空"].append(f"均线势头: {ma_long_short}") + + macd_signal = str(row["macd_signal"]) + macd_divergence = str(row["macd_divergence"]) + kdj_signal = str(row["kdj_signal"]) + kdj_pattern = str(row["kdj_pattern"]) + rsi_signal = str(row["rsi_signal"]) + boll_signal = str(row["boll_signal"]) + boll_pattern = str(row["boll_pattern"]) + + is_long = False + is_short = False + is_over_buy = False + is_over_sell = False + if ( + macd_divergence == "顶背离" + or kdj_pattern in ["超超买", "超买"] + or rsi_signal in ["超超买", "超买"] + or boll_pattern in ["超超买", "超买"] + ): + is_over_buy = True + if ( + macd_divergence == "底背离" + or kdj_pattern in ["超超卖", "超卖"] + or rsi_signal in ["超超卖", "超卖"] + or boll_pattern in ["超超卖", "超卖"] + ): + is_over_sell = True + if ma_long_short == "多": + is_long = True + if ma_long_short == "空": + is_short = True + ma_divergence = str(row["ma_divergence"]) + + if is_long: + check_long_short = "多" + if is_over_buy: + check_over_buy = "超买" + else: + check_over_buy = "非超买" + ma_divergence_value = ( + METRICS_CONFIG.get("ma_divergence", {}) + .get(check_long_short, {}) + .get(check_over_buy, {}) + .get(ma_divergence, 1) + ) + if ma_divergence_value > 1: + long_short_info["多"].append(f"均线形态: {ma_divergence}") + if ma_divergence_value < 1: + long_short_info["空"].append(f"均线形态: {ma_divergence}") + if is_short: + if is_over_sell: + check_over_sell = "超卖" + else: + check_over_sell = "非超卖" + ma_divergence_value = ( + METRICS_CONFIG.get("ma_divergence", {}) + .get(check_long_short, {}) + .get(check_over_sell, {}) + .get(ma_divergence, 1) + ) + if ma_divergence_value > 1: + long_short_info["多"].append(f"均线形态: {ma_divergence}") + if ma_divergence_value < 1: + long_short_info["空"].append(f"均线形态: {ma_divergence}") + + ma_cross = str(row["ma_cross"]) + ma_cross_value = METRICS_CONFIG.get("ma_cross", {}).get(ma_cross, 1) + if ma_cross_value > 1: + long_short_info["多"].append(f"均线交叉: {ma_cross}") + if ma_cross_value < 1: + long_short_info["空"].append(f"均线交叉: {ma_cross}") + + macd_signal_value = METRICS_CONFIG.get("macd", {}).get(macd_signal, 1) + if macd_signal_value > 1: + long_short_info["多"].append(f"MACD信号: {macd_signal}") + if macd_signal_value < 1: + long_short_info["空"].append(f"MACD信号: {macd_signal}") + + macd_divergence_value = METRICS_CONFIG.get("macd", {}).get(macd_divergence, 1) + if macd_divergence_value > 1: + long_short_info["多"].append(f"MACD背离: {row['macd_divergence']}") + if macd_divergence_value < 1: + long_short_info["空"].append(f"MACD背离: {row['macd_divergence']}") + + kdj_signal_value = METRICS_CONFIG.get("kdj", {}).get(kdj_signal, 1) + if kdj_signal_value > 1: + long_short_info["多"].append(f"KDJ信号: {kdj_signal}") + if kdj_signal_value < 1: + long_short_info["空"].append(f"KDJ信号: {kdj_signal}") + + kdj_pattern_value = METRICS_CONFIG.get("kdj", {}).get(kdj_pattern, 1) + if kdj_pattern_value > 1: + long_short_info["多"].append(f"KDJ形态: {kdj_pattern}") + if kdj_pattern_value < 1: + long_short_info["空"].append(f"KDJ形态: {kdj_pattern}") + + rsi_signal_value = METRICS_CONFIG.get("rsi", {}).get(rsi_signal, 1) + if rsi_signal_value > 1: + long_short_info["多"].append(f"RSI形态: {rsi_signal}") + if rsi_signal_value < 1: + long_short_info["空"].append(f"RSI形态: {rsi_signal}") + + boll_signal_value = METRICS_CONFIG.get("boll", {}).get(boll_signal, 1) + if boll_signal_value > 1: + long_short_info["多"].append(f"BOLL信号: {boll_signal}") + if boll_signal_value < 1: + long_short_info["空"].append(f"BOLL信号: {boll_signal}") + + boll_pattern_value = METRICS_CONFIG.get("boll", {}).get(boll_pattern, 1) + if boll_pattern_value > 1: + long_short_info["多"].append(f"BOLL形态: {boll_pattern}") + if boll_pattern_value < 1: + long_short_info["空"].append(f"BOLL形态: {boll_pattern}") + + k_up_down = str(row["k_up_down"]) + k_shape = str(row["k_shape"]) + if is_over_buy: + k_shape_value = ( + METRICS_CONFIG.get("k_shape", {}) + .get("超买", {}) + .get(k_up_down, {}) + .get(k_shape, 1) + ) + if k_shape_value > 1: + long_short_info["多"].append(f"K线形态: {k_shape}") + if k_shape_value < 1: + long_short_info["空"].append(f"K线形态: {k_shape}") + if is_over_sell: + k_shape_value = ( + METRICS_CONFIG.get("k_shape", {}) + .get("超卖", {}) + .get(k_up_down, {}) + .get(k_shape, 1) + ) + if k_shape_value > 1: + long_short_info["多"].append(f"K线形态: {k_shape}") + if k_shape_value < 1: + long_short_info["空"].append(f"K线形态: {k_shape}") + + + if k_up_down == "阳线": + if is_long and not is_over_buy: + long_short_info["多"].append(f"量价关系: 非超买且放量上涨") + if is_short and is_over_sell: + long_short_info["多"].append(f"量价关系: 空头态势且超卖,但出现放量上涨,可能反转") + if k_up_down == "阴线": + if is_long and is_over_buy: + if close_80_high or close_90_high or high_80_high or high_90_high: + long_short_info["空"].append(f"量价关系: 多头态势且超买, 目前是价位高点,但出现放量下跌,可能反转") + if is_short and not is_over_sell: + long_short_info["空"].append(f"量价关系: 空头态势且非超卖,出现放量下跌") + + contents.append(f"### 技术指标信息") + long_info_list = long_short_info["多"] + short_info_list = long_short_info["空"] + if len(long_info_list) > 0: + contents.append(f"#### 多头指标信号") + contents.append(f"{"\n".join(long_info_list)}") + if len(short_info_list) > 0: + contents.append(f"#### 空头指标信号") + contents.append(f"{"\n".join(short_info_list)}") + + mark_down_text = "\n\n".join(contents) + return mark_down_text diff --git a/core/db/__pycache__/db_huge_volume_data.cpython-312.pyc b/core/db/__pycache__/db_huge_volume_data.cpython-312.pyc index 8669d47..831f6ab 100644 Binary files a/core/db/__pycache__/db_huge_volume_data.cpython-312.pyc and b/core/db/__pycache__/db_huge_volume_data.cpython-312.pyc differ diff --git a/core/db/db_market_monitor.py b/core/db/db_market_monitor.py new file mode 100644 index 0000000..e578459 --- /dev/null +++ b/core/db/db_market_monitor.py @@ -0,0 +1,439 @@ +import pandas as pd +import logging +from typing import Optional, List, Dict, Any, Union +from core.db.db_manager import DBData +from core.utils import transform_date_time_to_timestamp + +logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s") + + +class DBMarketMonitor: + def __init__( + self, + db_url: str + ): + self.db_url = db_url + self.table_name = "crypto_market_monitor" + self.columns = [ + "symbol", + "bar", + "window_size", + "timestamp", + "date_time", + "report", + "report_file_path", + "report_file_name", + "report_file_byte_size" + ] + self.db_manager = DBData(db_url, self.table_name, self.columns) + + def _process_time_parameter(self, time_param: Optional[Union[str, int]]) -> Optional[int]: + """ + 处理时间参数,统一转换为时间戳 + :param time_param: 时间参数(字符串或整数) + :return: 时间戳或None + """ + if time_param is None: + return None + time_param = transform_date_time_to_timestamp(time_param) + if time_param is None: + return None + return time_param + + def _build_query_conditions( + self, + symbol: Optional[str] = None, + bar: Optional[str] = None, + window_size: Optional[int] = None, + start: Optional[Union[str, int]] = None, + end: Optional[Union[str, int]] = None, + additional_conditions: Optional[List[str]] = None + ) -> tuple[List[str], Dict[str, Any]]: + """ + 构建查询条件 + :param symbol: 交易对 + :param bar: K线周期 + :param window_size: 窗口大小 + :param start: 开始时间 + :param end: 结束时间 + :param additional_conditions: 额外的查询条件 + :return: (条件列表, 参数字典) + """ + conditions = additional_conditions or [] + condition_dict = {} + + if symbol: + conditions.append("symbol = :symbol") + condition_dict["symbol"] = symbol + if bar: + conditions.append("bar = :bar") + condition_dict["bar"] = bar + if window_size: + conditions.append("window_size = :window_size") + condition_dict["window_size"] = window_size + + # 处理时间参数 + start_timestamp = self._process_time_parameter(start) + end_timestamp = self._process_time_parameter(end) + + if start_timestamp is not None: + conditions.append("timestamp >= :start") + condition_dict["start"] = start_timestamp + if end_timestamp is not None: + conditions.append("timestamp <= :end") + condition_dict["end"] = end_timestamp + + return conditions, condition_dict + + def insert_data_to_mysql(self, df: pd.DataFrame) -> None: + """ + 将市场监控数据保存到MySQL的crypto_market_monitor表 + 速度:⭐⭐⭐⭐⭐ 最快 + 内存:⭐⭐⭐⭐ 中等 + 适用场景:中小数据量(<10万条) + :param df: 市场监控数据DataFrame + """ + if df is None or df.empty: + logging.warning("DataFrame为空,无需写入数据库。") + return + + self.db_manager.insert_data_to_mysql(df) + + def insert_data_to_mysql_fast(self, df: pd.DataFrame) -> None: + """ + 快速插入市场监控数据(方案2:使用executemany批量插入) + 速度:⭐⭐⭐⭐ 很快 + 内存:⭐⭐⭐⭐⭐ 低 + 适用场景:中等数据量 + :param df: 市场监控数据DataFrame + """ + if df is None or df.empty: + logging.warning("DataFrame为空,无需写入数据库。") + return + + self.db_manager.insert_data_to_mysql_fast(df) + + def insert_data_to_mysql_chunk(self, df: pd.DataFrame, chunk_size: int = 1000) -> None: + """ + 分块插入市场监控数据(方案3:分批处理大数据量) + 速度:⭐⭐⭐ 中等 + 内存:⭐⭐⭐⭐⭐ 最低 + 适用场景:大数据量(>10万条) + :param df: 市场监控数据DataFrame + :param chunk_size: 每块大小 + """ + if df is None or df.empty: + logging.warning("DataFrame为空,无需写入数据库。") + return + + self.db_manager.insert_data_to_mysql_chunk(df, chunk_size) + + def insert_data_to_mysql_simple(self, df: pd.DataFrame) -> None: + """ + 简单插入市场监控数据(方案4:使用pandas to_sql) + 速度:⭐⭐ 较慢 + 内存:⭐⭐⭐ 较高 + 适用场景:小数据量,简单场景 + :param df: 市场监控数据DataFrame + """ + if df is None or df.empty: + logging.warning("DataFrame为空,无需写入数据库。") + return + + self.db_manager.insert_data_to_mysql_simple(df) + + def query_latest_data(self, symbol: str, bar: str, window_size: int) -> Optional[Dict[str, Any]]: + """ + 查询最新的市场监控数据 + :param symbol: 交易对 + :param bar: K线周期 + :param window_size: 窗口大小 + :return: 最新数据字典或None + """ + conditions = [ + "symbol = :symbol", + "bar = :bar", + "window_size = :window_size" + ] + condition_dict = { + "symbol": symbol, + "bar": bar, + "window_size": window_size + } + + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + LIMIT 1 + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=False) + return result + + def query_data_before_timestamp(self, symbol: str, bar: str, window_size: int, timestamp: int, limit: int = 100) -> Optional[List[Dict[str, Any]]]: + """ + 查询指定时间戳之前的数据 + :param symbol: 交易对 + :param bar: K线周期 + :param window_size: 窗口大小 + :param timestamp: 时间戳 + :param limit: 限制条数 + :return: 数据列表或None + """ + conditions = [ + "symbol = :symbol", + "bar = :bar", + "window_size = :window_size", + "timestamp < :timestamp" + ] + condition_dict = { + "symbol": symbol, + "bar": bar, + "window_size": window_size, + "timestamp": timestamp + } + + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + LIMIT {limit} + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=True) + return result + + def query_market_monitor_by_symbol_bar(self, symbol: str, bar: str, window_size: int, start: Optional[Union[str, int]] = None, end: Optional[Union[str, int]] = None) -> Optional[List[Dict[str, Any]]]: + """ + 根据交易对和K线周期查询市场监控数据 + :param symbol: 交易对 + :param bar: K线周期 + :param window_size: 窗口大小 + :param start: 开始时间 + :param end: 结束时间 + :return: 数据列表或None + """ + conditions, condition_dict = self._build_query_conditions( + symbol=symbol, + bar=bar, + window_size=window_size, + start=start, + end=end + ) + + if not conditions: + sql = f"SELECT * FROM {self.table_name} ORDER BY timestamp DESC" + else: + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=True) + return result + + def query_market_monitor_by_window_size(self, window_size: int, symbol: Optional[str] = None, bar: Optional[str] = None, start: Optional[Union[str, int]] = None, end: Optional[Union[str, int]] = None) -> Optional[List[Dict[str, Any]]]: + """ + 根据窗口大小查询市场监控数据 + :param window_size: 窗口大小 + :param symbol: 交易对(可选) + :param bar: K线周期(可选) + :param start: 开始时间(可选) + :param end: 结束时间(可选) + :return: 数据列表或None + """ + conditions, condition_dict = self._build_query_conditions( + symbol=symbol, + bar=bar, + window_size=window_size, + start=start, + end=end + ) + + if not conditions: + sql = f"SELECT * FROM {self.table_name} ORDER BY timestamp DESC" + else: + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=True) + return result + + def get_market_monitor_statistics(self, symbol: Optional[str] = None, bar: Optional[str] = None, window_size: Optional[int] = None, start: Optional[Union[str, int]] = None, end: Optional[Union[str, int]] = None) -> Optional[Dict[str, Any]]: + """ + 获取市场监控数据统计信息 + :param symbol: 交易对(可选) + :param bar: K线周期(可选) + :param window_size: 窗口大小(可选) + :param start: 开始时间(可选) + :param end: 结束时间(可选) + :return: 统计信息字典或None + """ + conditions, condition_dict = self._build_query_conditions( + symbol=symbol, + bar=bar, + window_size=window_size, + start=start, + end=end + ) + + where_clause = f"WHERE {' AND '.join(conditions)}" if conditions else "" + + sql = f""" + SELECT + COUNT(*) as total_count, + COUNT(DISTINCT symbol) as symbol_count, + COUNT(DISTINCT bar) as bar_count, + COUNT(DISTINCT window_size) as window_size_count, + MIN(timestamp) as earliest_timestamp, + MAX(timestamp) as latest_timestamp, + AVG(report_file_byte_size) as avg_file_size, + SUM(report_file_byte_size) as total_file_size + FROM {self.table_name} + {where_clause} + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=False) + return result + + def get_recent_market_monitor_data(self, symbol: Optional[str] = None, bar: Optional[str] = None, window_size: Optional[int] = None, limit: int = 100) -> Optional[List[Dict[str, Any]]]: + """ + 获取最近的市场监控数据 + :param symbol: 交易对(可选) + :param bar: K线周期(可选) + :param window_size: 窗口大小(可选) + :param limit: 限制条数 + :return: 数据列表或None + """ + conditions, condition_dict = self._build_query_conditions( + symbol=symbol, + bar=bar, + window_size=window_size + ) + + if not conditions: + sql = f"SELECT * FROM {self.table_name} ORDER BY timestamp DESC LIMIT {limit}" + else: + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + LIMIT {limit} + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=True) + return result + + def get_market_monitor_by_file_size_range(self, min_size: int, max_size: int, symbol: Optional[str] = None, bar: Optional[str] = None, window_size: Optional[int] = None, start: Optional[Union[str, int]] = None, end: Optional[Union[str, int]] = None) -> Optional[List[Dict[str, Any]]]: + """ + 根据文件大小范围查询市场监控数据 + :param min_size: 最小文件大小 + :param max_size: 最大文件大小 + :param symbol: 交易对(可选) + :param bar: K线周期(可选) + :param window_size: 窗口大小(可选) + :param start: 开始时间(可选) + :param end: 结束时间(可选) + :return: 数据列表或None + """ + conditions, condition_dict = self._build_query_conditions( + symbol=symbol, + bar=bar, + window_size=window_size, + start=start, + end=end + ) + + conditions.append("report_file_byte_size BETWEEN :min_size AND :max_size") + condition_dict["min_size"] = min_size + condition_dict["max_size"] = max_size + + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=True) + return result + + def get_market_monitor_by_symbol_list(self, symbols: List[str], bar: Optional[str] = None, window_size: Optional[int] = None, start: Optional[Union[str, int]] = None, end: Optional[Union[str, int]] = None) -> Optional[List[Dict[str, Any]]]: + """ + 根据交易对列表查询市场监控数据 + :param symbols: 交易对列表 + :param bar: K线周期(可选) + :param window_size: 窗口大小(可选) + :param start: 开始时间(可选) + :param end: 结束时间(可选) + :return: 数据列表或None + """ + if not symbols: + return None + + conditions, condition_dict = self._build_query_conditions( + bar=bar, + window_size=window_size, + start=start, + end=end + ) + + # 构建IN查询条件 + placeholders = [f":symbol_{i}" for i in range(len(symbols))] + conditions.append(f"symbol IN ({', '.join(placeholders)})") + for i, symbol in enumerate(symbols): + condition_dict[f"symbol_{i}"] = symbol + + sql = f""" + SELECT * FROM {self.table_name} + WHERE {' AND '.join(conditions)} + ORDER BY timestamp DESC + """ + + result = self.db_manager.query_data(sql, condition_dict, return_multi=True) + return result + + def delete_old_market_monitor_data(self, days: int = 30, symbol: Optional[str] = None, bar: Optional[str] = None, window_size: Optional[int] = None) -> int: + """ + 删除旧的市场监控数据 + :param days: 保留天数 + :param symbol: 交易对(可选) + :param bar: K线周期(可选) + :param window_size: 窗口大小(可选) + :return: 删除的记录数 + """ + import datetime + from sqlalchemy import text + + # 计算截止时间戳 + cutoff_time = datetime.datetime.now() - datetime.timedelta(days=days) + cutoff_timestamp = int(cutoff_time.timestamp() * 1000) # 转换为毫秒时间戳 + + conditions, condition_dict = self._build_query_conditions( + symbol=symbol, + bar=bar, + window_size=window_size + ) + + conditions.append("timestamp < :cutoff_timestamp") + condition_dict["cutoff_timestamp"] = cutoff_timestamp + + sql = f""" + DELETE FROM {self.table_name} + WHERE {' AND '.join(conditions)} + """ + + try: + with self.db_manager.db_engine.connect() as conn: + result = conn.execute(text(sql), condition_dict) + conn.commit() + deleted_count = result.rowcount + logging.info(f"删除了 {deleted_count} 条旧的市场监控数据") + return deleted_count + except Exception as e: + logging.error(f"删除旧数据时发生错误: {e}") + return 0 \ No newline at end of file diff --git a/huge_volume_main.py b/huge_volume_main.py index 04557c2..887a0f8 100644 --- a/huge_volume_main.py +++ b/huge_volume_main.py @@ -44,7 +44,7 @@ class HugeVolumeMain: for bar in self.market_data_main.bars: if start is None: start = MONITOR_CONFIG.get("volume_monitor", {}).get( - "initial_date", "2025-05-01 00:00:00" + "initial_date", "2025-05-15 00:00:00" ) data = self.detect_volume_spike( symbol, @@ -467,7 +467,7 @@ def batch_initial_detect_volume_spike(threshold: float = 2.0): window_sizes = [50, 80, 100, 120] huge_volume_main = HugeVolumeMain(threshold) start_date = MONITOR_CONFIG.get("volume_monitor", {}).get( - "initial_date", "2025-05-01 00:00:00" + "initial_date", "2025-05-15 00:00:00" ) for window_size in window_sizes: huge_volume_main.batch_initial_detect_volume_spike( diff --git a/market_data_main.py b/market_data_main.py index 3fd520b..203c703 100644 --- a/market_data_main.py +++ b/market_data_main.py @@ -2,7 +2,7 @@ import logging from datetime import datetime from time import sleep import pandas as pd -from core.biz.market_data_monitor import MarketDataMonitor +from core.biz.market_data import MarketData from core.db.db_market_data import DBMarketData from core.biz.metrics_calculation import MetricsCalculation from core.utils import ( @@ -26,7 +26,7 @@ logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(mes class MarketDataMain: def __init__(self): - self.market_data_monitor = MarketDataMonitor( + self.market_data = MarketData( api_key=API_KEY, secret_key=SECRET_KEY, passphrase=PASSPHRASE, @@ -113,7 +113,7 @@ class MarketDataMain: logging.info( f"获取行情数据: {symbol} {bar} 从 {start_date_time} 到 {end_date_time}" ) - data = self.market_data_monitor.get_historical_kline_data( + data = self.market_data.get_historical_kline_data( symbol=symbol, start=current_start_time_ts, bar=bar, @@ -172,43 +172,7 @@ class MarketDataMain: "create_time", ] ] - data["pre_close"] = None - data["close_change"] = None - data["pct_chg"] = None - data["ma1"] = None - data["ma2"] = None - data["dif"] = None - data["dea"] = None - data["macd"] = None - data["macd_signal"] = None - data["macd_divergence"] = None - data["kdj_k"] = None - data["kdj_d"] = None - data["kdj_j"] = None - data["kdj_signal"] = None - data["kdj_pattern"] = None - data["ma5"] = None - data["ma10"] = None - data["ma20"] = None - data["ma30"] = None - data["ma_cross"] = None - data["ma5_close_diff"] = None - data["ma10_close_diff"] = None - data["ma20_close_diff"] = None - data["ma30_close_diff"] = None - data["ma_close_avg"] = None - data["ma_long_short"] = None - data["ma_divergence"] = None - data["rsi_14"] = None - data["rsi_signal"] = None - data["boll_upper"] = None - data["boll_middle"] = None - data["boll_lower"] = None - data["boll_signal"] = None - data["boll_pattern"] = None - data["k_length"] = None - data["k_shape"] = None - data["k_up_down"] = None + data = self.add_new_columns(data) self.db_market_data.insert_data_to_mysql(data) current_min_start_time_ts = data["timestamp"].min() if current_min_start_time_ts < min_start_time_ts: @@ -233,7 +197,10 @@ class MarketDataMain: handle_data = self.db_market_data.query_market_data_by_symbol_bar( symbol=symbol, bar=bar, start=earliest_timestamp, end=None ) - if handle_data is not None and len(handle_data) > len(before_data): + if handle_data is not None: + if before_data is not None and len(handle_data) <= len(before_data): + logging.error(f"handle_data数据条数小于before_data数据条数: {symbol} {bar}") + return None if isinstance(handle_data, list): handle_data = pd.DataFrame(handle_data) elif isinstance(handle_data, dict): @@ -251,6 +218,54 @@ class MarketDataMain: logging.info(f"开始保存技术指标数据: {symbol} {bar}") self.db_market_data.insert_data_to_mysql(handle_data) return data + + def add_new_columns(self, data: pd.DataFrame): + """ + 添加新列 + """ + columns = data.columns.tolist() + if "buy_sz" not in columns: + data["buy_sz"] = -1 + if "sell_sz" not in columns: + data["sell_sz"] = -1 + data["pre_close"] = None + data["close_change"] = None + data["pct_chg"] = None + data["ma1"] = None + data["ma2"] = None + data["dif"] = None + data["dea"] = None + data["macd"] = None + data["macd_signal"] = None + data["macd_divergence"] = None + data["kdj_k"] = None + data["kdj_d"] = None + data["kdj_j"] = None + data["kdj_signal"] = None + data["kdj_pattern"] = None + data["ma5"] = None + data["ma10"] = None + data["ma20"] = None + data["ma30"] = None + data["ma_cross"] = None + data["ma5_close_diff"] = None + data["ma10_close_diff"] = None + data["ma20_close_diff"] = None + data["ma30_close_diff"] = None + data["ma_close_avg"] = None + data["ma_long_short"] = None + data["ma_divergence"] = None + data["rsi_14"] = None + data["rsi_signal"] = None + data["boll_upper"] = None + data["boll_middle"] = None + data["boll_lower"] = None + data["boll_signal"] = None + data["boll_pattern"] = None + data["k_length"] = None + data["k_shape"] = None + data["k_up_down"] = None + return data def calculate_metrics(self, data: pd.DataFrame): """ diff --git a/market_monitor_main.py b/market_monitor_main.py new file mode 100644 index 0000000..3904b14 --- /dev/null +++ b/market_monitor_main.py @@ -0,0 +1,164 @@ +from numpy import real +from market_data_main import MarketDataMain +from huge_volume_main import HugeVolumeMain +from core.biz.market_monitor import create_metrics_report +from core.db.db_market_monitor import DBMarketMonitor +from core.wechat import Wechat +from config import MONITOR_CONFIG, MYSQL_CONFIG +from core.utils import timestamp_to_datetime, transform_date_time_to_timestamp + +import logging +import os +import pandas as pd +from datetime import datetime, timedelta +import json +import re + +logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s") + + +class MarketMonitorMain: + def __init__(self): + self.market_data_main = MarketDataMain() + self.huge_volume_main = HugeVolumeMain() + self.wechat = Wechat() + self.monitor_config = MONITOR_CONFIG + self.window_size = 100 + self.start_date = MONITOR_CONFIG.get("volume_monitor", {}).get( + "initial_date", "2025-05-01 00:00:00" + ) + self.latest_record_file_path = "./output/latest_record.json" + self.latest_record = self.get_latest_record() + self.output_folder = "./output/report/market_monitor/" + os.makedirs(self.output_folder, exist_ok=True) + + mysql_user = MYSQL_CONFIG.get("user", "xch") + mysql_password = MYSQL_CONFIG.get("password", "") + if not mysql_password: + raise ValueError("MySQL password is not set") + mysql_host = MYSQL_CONFIG.get("host", "localhost") + mysql_port = MYSQL_CONFIG.get("port", 3306) + mysql_database = MYSQL_CONFIG.get("database", "okx") + + self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}" + + self.db_market_monitor = DBMarketMonitor(self.db_url) + + def get_latest_record(self): + """ + 获取最新记录 + """ + if os.path.exists(self.latest_record_file_path): + with open(self.latest_record_file_path, "r", encoding="utf-8") as f: + return json.load(f) + else: + with open(self.latest_record_file_path, "w", encoding="utf-8") as f: + json.dump({}, f, ensure_ascii=False, indent=4) + return {} + + def monitor_realtime_market( + self, + symbol: str, + bar: str, + only_output_huge_volume: bool = False, + only_output_rise: bool = False, + ): + """ + 监控最新市场数据 + 考虑到速度,暂不与数据库交互,直接从api获取数据 + """ + real_time_data = self.market_data_main.market_data.get_realtime_kline_data( + symbol=symbol, + bar=bar, + end_time=None, + limit=50, + ) + + if real_time_data is None or len(real_time_data) == 0: + logging.error(f"获取最新市场数据失败: {symbol}, {bar}") + return + + latest_realtime_timestamp = real_time_data["timestamp"].iloc[-1] + latest_record_timestamp = ( + self.latest_record.get(symbol, {}).get(bar, {}).get("timestamp", 0) + ) + latest_reatime_datetime = timestamp_to_datetime(latest_realtime_timestamp) + latest_record_datetime = timestamp_to_datetime(latest_record_timestamp) + if ( + latest_record_timestamp is not None + and latest_realtime_timestamp <= latest_record_timestamp + ): + logging.info( + f"最新市场数据时间戳 {latest_reatime_datetime} 小于等于最新记录时间戳 {latest_record_datetime}, 不进行监控" + ) + return + else: + self.latest_record[symbol] = {bar: {"timestamp": latest_realtime_timestamp}} + with open(self.latest_record_file_path, "w", encoding="utf-8") as f: + json.dump(self.latest_record, f, ensure_ascii=False, indent=4) + + + logging.info( + f"最新市场数据时间 {latest_reatime_datetime}, 上一次记录时间 {latest_record_datetime}" + ) + + real_time_data = self.market_data_main.add_new_columns(real_time_data) + logging.info(f"开始计算技术指标: {symbol} {bar}") + real_time_data = self.market_data_main.calculate_metrics(real_time_data) + logging.info(f"开始计算大成交量: {symbol} {bar} 窗口大小: {self.window_size}") + real_time_data = self.huge_volume_main.huge_volume.detect_huge_volume( + data=real_time_data, + window_size=self.window_size, + threshold=self.huge_volume_main.threshold, + check_price=True, + only_output_huge_volume=only_output_huge_volume, + output_excel=False, + ) + if real_time_data is None or len(real_time_data) == 0: + logging.error( + f"计算大成交量失败: {symbol} {bar} 窗口大小: {self.window_size}" + ) + return + + report = create_metrics_report(real_time_data, only_output_rise) + text_length = len(report.encode("utf-8")) + logging.info(f"发送报告到企业微信,字节数: {text_length}") + self.wechat.send_markdown(report) + self.latest_record[symbol][bar]["timestamp"] = latest_realtime_timestamp + with open(self.latest_record_file_path, "w", encoding="utf-8") as f: + json.dump(self.latest_record, f, ensure_ascii=False, indent=4) + # remove punction in latest_reatime_datetime + latest_reatime_datetime = re.sub(r"[\:\-\s]", "", latest_reatime_datetime) + report_file_name = f"{symbol}_{bar}_{self.window_size}_{latest_reatime_datetime}.md" + report_file_path = os.path.join(self.output_folder, report_file_name) + with open(report_file_path, "w", encoding="utf-8") as f: + f.write(report.replace(":", "_")) + report_file_byte_size = os.path.getsize(report_file_path) + report_data = { + "symbol": symbol, + "bar": bar, + "window_size": self.window_size, + "timestamp": latest_realtime_timestamp, + "date_time": latest_reatime_datetime, + "report": report, + "report_file_path": report_file_path, + "report_file_name": report_file_name, + "report_file_byte_size": report_file_byte_size + } + report_data = pd.DataFrame([report_data]) + logging.info(f"插入数据到数据库") + self.db_market_monitor.insert_data_to_mysql(report_data) + + def batch_monitor_realtime_market( + self, + only_output_huge_volume: bool = True, + only_output_rise: bool = False, + ): + for symbol in self.market_data_main.symbols: + for bar in self.market_data_main.bars: + self.monitor_realtime_market( + symbol, + bar, + only_output_huge_volume, + only_output_rise, + ) diff --git a/metrics_config.py b/metrics_config.py new file mode 100644 index 0000000..3ebabe9 --- /dev/null +++ b/metrics_config.py @@ -0,0 +1,166 @@ +METRICS_CONFIG = { + "macd": { + "金叉": 1.5, + "死叉": 0.5, + "底背离": 1.5, + "顶背离": 0.5, + }, + "kdj": { + "金叉": 1.5, + "死叉": 0.5, + "超超卖": 1.5, + "超卖": 1.2, + "超超买": 0.5, + "超买": 0.8, + }, + "rsi": { + "超卖": 1.2, + "超买": 0.8, + }, + "boll": { + "突破下轨": 1.2, + "击穿上轨": 0.8, + "超超卖": 1.5, + "超卖": 1.2, + "超超买": 0.5, + "超买": 0.8, + }, + "ma_long_short": { + "多": 1.2, + "空": 0.8, + }, + "ma_divergence": { + "多": { + "超买": { + "超发散": 0.8, + "粘合": 0.8, + }, + "非超买": { + "发散": 1.2, + "适中": 1.2, + "粘合": 1.5, + }, + }, + "空": { + "超卖": { + "超发散": 1.2, + "粘合": 1.2, + }, + "非超卖": { + "发散": 0.8, + "适中": 0.8, + "粘合": 0.8, + }, + }, + }, + "ma5102030": { + "5穿10": 1.1, + "5穿20": 1.2, + "5穿30": 1.3, + "10穿30": 1.3, + "10穿5": 0.8, + "20穿5": 0.7, + "30穿5": 0.6, + "30穿10": 0.5, + }, + "k_shape": { + "超买": { + "阳线": { + "一字": 0.8, + "长吊锤线": 0.8, + "吊锤线": 0.9, + "长倒T线": 0.8, + "倒T线": 0.9, + "长十字星": 0.8, + "十字星": 0.9, + "长上影线纺锤体": 0.8, + "长下影线纺锤体": 0.9, + "大实体": 1.1, + "超大实体": 1.2, + "超大实体+光头光脚": 1.3, + }, + "阴线": { + "一字": 0.7, + "长吊锤线": 0.7, + "吊锤线": 0.8, + "长倒T线": 0.7, + "倒T线": 0.8, + "长十字星": 0.7, + "十字星": 0.8, + "长上影线纺锤体": 0.7, + "长下影线纺锤体": 0.8, + "大实体": 0.7, + "超大实体": 0.6, + "光头光脚": 0.8, + "超大实体+光头光脚": 0.5, + }, + }, + "超卖": { + "阳线": { + "一字": 1.5, + "长吊锤线": 1.5, + "吊锤线": 1.2, + "长倒T线": 1.5, + "倒T线": 1.2, + "长十字星": 1.6, + "十字星": 1.3, + "长上影线纺锤体": 1.2, + "长下影线纺锤体": 1.5, + "小实体": 1.2, + "大实体": 1.5, + "超大实体": 1.8, + "光头光脚": 1.5, + "超大实体+光头光脚": 2, + }, + "阴线": { + "一字": 1.2, + "长吊锤线": 1.2, + "吊锤线": 1.1, + "长倒T线": 1.2, + "倒T线": 1.1, + "长十字星": 1.3, + "十字星": 1.1, + "长上影线纺锤体": 1.1, + "长下影线纺锤体": 1.2, + "大实体": 0.8, + "超大实体": 0.7, + "光头光脚": 0.9, + "超大实体+光头光脚": 0.6, + }, + }, + }, + "huge_volume": { + "阳线": { + "多": { + "非超买": { + "any": 1.2, + }, + }, + "空": { + "超卖": { + "close_20_low": 1.2, + "close_10_low": 1.3, + "low_20_low": 1.3, + "low_10_low": 1.5, + "any": 1.1, + }, + }, + }, + "阴线": { + "多": { + "超买": { + "close_80_high": 0.8, + "close_90_high": 0.7, + "high_80_high": 0.7, + "high_90_high": 0.6, + "any": 0.9, + }, + }, + "空": { + "非超卖": { + "any": 0.8, + }, + }, + }, + }, +} diff --git a/play.py b/play.py index c70c603..453b77a 100644 --- a/play.py +++ b/play.py @@ -1,6 +1,6 @@ import logging -from core.quant_trader import QuantTrader -from core.strategy import QuantStrategy +from core.biz.quant_trader import QuantTrader +from core.biz.strategy import QuantStrategy logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s') diff --git a/sql/query/sql_playground.sql b/sql/query/sql_playground.sql index af4b3f0..45f9454 100644 --- a/sql/query/sql_playground.sql +++ b/sql/query/sql_playground.sql @@ -4,7 +4,7 @@ order by timestamp ; select * from crypto_market_data WHERE symbol='XCH-USDT' and bar='5m' and date_time > '2025-08-04 15:00:00' -order by timestamp desc; +order by timestamp asc; delete FROM crypto_market_data where symbol != 'XCH-USDT'; diff --git a/sql/table/crypto_market_monitor.sql b/sql/table/crypto_market_monitor.sql new file mode 100644 index 0000000..4205684 --- /dev/null +++ b/sql/table/crypto_market_monitor.sql @@ -0,0 +1,13 @@ +CREATE TABLE IF NOT EXISTS crypto_market_monitor ( + id BIGINT AUTO_INCREMENT PRIMARY KEY, + symbol VARCHAR(50) NOT NULL COMMENT '交易对', + bar VARCHAR(20) NOT NULL COMMENT 'K线周期', + window_size INT NOT NULL COMMENT '窗口大小, 50, 80, 100, 120', + timestamp BIGINT NOT NULL COMMENT '时间戳', + date_time VARCHAR(50) NOT NULL COMMENT '日期时间', + report TEXT NOT NULL COMMENT '报告', + report_file_path VARCHAR(255) NOT NULL COMMENT '报告文件路径', + report_file_name VARCHAR(255) NOT NULL COMMENT '报告文件名', + report_file_byte_size INT NOT NULL COMMENT '报告文件大小', + UNIQUE KEY idx_symbol_bar_window_size_timestamp (symbol, bar, window_size, timestamp) +) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='市场行情监控'; \ No newline at end of file