2025-08-31 03:20:59 +00:00
|
|
|
|
import yfinance as yf
|
2025-09-01 10:01:21 +00:00
|
|
|
|
import os
|
2025-08-31 03:20:59 +00:00
|
|
|
|
import pandas as pd
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
import seaborn as sns
|
|
|
|
|
|
import core.logger as logging
|
|
|
|
|
|
from config import OKX_MONITOR_CONFIG, MYSQL_CONFIG, WINDOW_SIZE
|
|
|
|
|
|
from core.db.db_market_data import DBMarketData
|
|
|
|
|
|
from core.db.db_huge_volume_data import DBHugeVolumeData
|
|
|
|
|
|
from core.utils import timestamp_to_datetime, transform_date_time_to_timestamp
|
|
|
|
|
|
|
|
|
|
|
|
# seaborn支持中文
|
|
|
|
|
|
plt.rcParams["font.family"] = ["SimHei"]
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.logger
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ORBStrategy:
|
|
|
|
|
|
def __init__(
|
|
|
|
|
|
self,
|
|
|
|
|
|
initial_capital=25000,
|
|
|
|
|
|
max_leverage=4,
|
|
|
|
|
|
risk_per_trade=0.01,
|
|
|
|
|
|
commission_per_share=0.0005,
|
2025-09-01 10:01:21 +00:00
|
|
|
|
is_us_stock=False,
|
2025-08-31 03:20:59 +00:00
|
|
|
|
):
|
|
|
|
|
|
"""
|
|
|
|
|
|
初始化ORB策略参数
|
2025-09-01 10:01:21 +00:00
|
|
|
|
ORB策略说明:
|
|
|
|
|
|
1. 每天仅1次交易机会,多头或空头,排除十字星:open1 == close1
|
|
|
|
|
|
2. 第一根5分钟K线:确定开盘区间(High1, Low1)
|
|
|
|
|
|
3. 第二根5分钟K线:根据第一根K线方向生成多空信号,open1<close1为多头,open1>close1为空头
|
|
|
|
|
|
entry_price=第二根K线开盘价,stop_price=第一根K线最低价(多头)或第一根K线最高价(空头)
|
|
|
|
|
|
4. 多头:跌破止损→止损;突破止盈→止盈
|
|
|
|
|
|
5. 空头:突破止损→止损;跌破止盈→止盈
|
|
|
|
|
|
6. 止损/止盈:根据$R计算,$R=|entry_price-stop_price|
|
|
|
|
|
|
7. 盈利目标:10R,即10*$R
|
|
|
|
|
|
8. 账户净值曲线:账户价值与市场价格
|
2025-08-31 03:20:59 +00:00
|
|
|
|
:param initial_capital: 初始账户资金(美元)
|
|
|
|
|
|
:param max_leverage: 最大杠杆倍数(默认4倍,符合FINRA规定)
|
|
|
|
|
|
:param risk_per_trade: 单次交易风险比例(默认1%)
|
|
|
|
|
|
:param commission_per_share: 每股交易佣金(美元,默认0.0005)
|
|
|
|
|
|
"""
|
2025-09-01 10:01:21 +00:00
|
|
|
|
logger.info(
|
|
|
|
|
|
f"初始化ORB策略参数:初始账户资金={initial_capital},最大杠杆倍数={max_leverage},单次交易风险比例={risk_per_trade},每股交易佣金={commission_per_share}"
|
|
|
|
|
|
)
|
2025-08-31 03:20:59 +00:00
|
|
|
|
self.initial_capital = initial_capital
|
|
|
|
|
|
self.max_leverage = max_leverage
|
|
|
|
|
|
self.risk_per_trade = risk_per_trade
|
|
|
|
|
|
self.commission_per_share = commission_per_share
|
|
|
|
|
|
self.data = None # 存储K线数据
|
|
|
|
|
|
self.trades = [] # 存储交易记录
|
|
|
|
|
|
self.equity_curve = None # 存储账户净值曲线
|
|
|
|
|
|
mysql_user = MYSQL_CONFIG.get("user", "xch")
|
|
|
|
|
|
mysql_password = MYSQL_CONFIG.get("password", "")
|
|
|
|
|
|
if not mysql_password:
|
|
|
|
|
|
raise ValueError("MySQL password is not set")
|
|
|
|
|
|
mysql_host = MYSQL_CONFIG.get("host", "localhost")
|
|
|
|
|
|
mysql_port = MYSQL_CONFIG.get("port", 3306)
|
|
|
|
|
|
mysql_database = MYSQL_CONFIG.get("database", "okx")
|
|
|
|
|
|
|
|
|
|
|
|
self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}"
|
|
|
|
|
|
self.db_market_data = DBMarketData(self.db_url)
|
2025-09-01 10:01:21 +00:00
|
|
|
|
self.is_us_stock = is_us_stock
|
|
|
|
|
|
self.output_chart_folder = r"./output/trade_sandbox/orb_strategy/chart/"
|
|
|
|
|
|
os.makedirs(self.output_chart_folder, exist_ok=True)
|
2025-08-31 03:20:59 +00:00
|
|
|
|
|
|
|
|
|
|
def fetch_intraday_data(self, symbol, start_date, end_date, interval="5m"):
|
|
|
|
|
|
"""
|
|
|
|
|
|
获取日内5分钟K线数据(需yfinance支持,部分数据可能有延迟)
|
|
|
|
|
|
:param ticker: 股票代码(如QQQ、TQQQ)
|
|
|
|
|
|
:param start_date: 起始日期(格式:YYYY-MM-DD)
|
|
|
|
|
|
:param end_date: 结束日期(格式:YYYY-MM-DD)
|
|
|
|
|
|
:param interval: K线周期(默认5分钟)
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.info(f"开始获取{symbol}数据:{start_date}至{end_date},间隔{interval}")
|
|
|
|
|
|
# data = yf.download(
|
|
|
|
|
|
# symbol, start=start_date, end=end_date, interval=interval, progress=False
|
|
|
|
|
|
# )
|
|
|
|
|
|
data = self.db_market_data.query_market_data_by_symbol_bar(
|
|
|
|
|
|
symbol, interval, start=start_date, end=end_date
|
|
|
|
|
|
)
|
|
|
|
|
|
data = pd.DataFrame(data)
|
|
|
|
|
|
data.sort_values(by="date_time", inplace=True)
|
|
|
|
|
|
# 保留核心列:开盘价、最高价、最低价、收盘价、成交量
|
|
|
|
|
|
data["Open"] = data["open"]
|
|
|
|
|
|
data["High"] = data["high"]
|
|
|
|
|
|
data["Low"] = data["low"]
|
|
|
|
|
|
data["Close"] = data["close"]
|
|
|
|
|
|
data["Volume"] = data["volume"]
|
2025-09-01 10:01:21 +00:00
|
|
|
|
if self.is_us_stock:
|
|
|
|
|
|
date_time_field = "date_time_us"
|
|
|
|
|
|
else:
|
|
|
|
|
|
date_time_field = "date_time"
|
|
|
|
|
|
data[date_time_field] = pd.to_datetime(data[date_time_field])
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# data["Date"]为日期,不包括时分秒,即date_time如果是2025-01-01 10:00:00,则Date为2025-01-01
|
2025-09-01 10:01:21 +00:00
|
|
|
|
data["Date"] = data[date_time_field].dt.date
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# 将Date转换为datetime64[ns]类型以确保类型一致
|
|
|
|
|
|
data["Date"] = pd.to_datetime(data["Date"])
|
|
|
|
|
|
|
2025-09-01 10:01:21 +00:00
|
|
|
|
self.data = data[
|
|
|
|
|
|
["symbol", "bar", "Date", date_time_field, "Open", "High", "Low", "Close", "Volume"]
|
|
|
|
|
|
].copy()
|
|
|
|
|
|
self.data.rename(columns={date_time_field: "date_time"}, inplace=True)
|
2025-08-31 03:20:59 +00:00
|
|
|
|
logger.info(f"成功获取{symbol}数据:{len(self.data)}根{interval}K线")
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_shares(self, account_value, entry_price, stop_price):
|
|
|
|
|
|
"""
|
|
|
|
|
|
根据ORB公式计算交易股数
|
|
|
|
|
|
:param account_value: 当前账户价值(美元)
|
|
|
|
|
|
:param entry_price: 交易entry价格(第二根5分钟K线开盘价)
|
|
|
|
|
|
:param stop_price: 止损价格(多头=第一根K线最低价,空头=第一根K线最高价)
|
|
|
|
|
|
:return: 整数股数(Shares)
|
|
|
|
|
|
"""
|
2025-09-01 10:01:21 +00:00
|
|
|
|
logger.info(
|
|
|
|
|
|
f"开始计算交易股数:账户价值={account_value},entry价格={entry_price},止损价格={stop_price}"
|
|
|
|
|
|
)
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# 计算单交易风险金额($R)
|
|
|
|
|
|
risk_per_trade_dollar = abs(entry_price - stop_price) # 风险金额取绝对值
|
|
|
|
|
|
if risk_per_trade_dollar <= 0:
|
|
|
|
|
|
return 0 # 无风险时不交易
|
|
|
|
|
|
|
|
|
|
|
|
# 公式1:基于风险预算的最大股数(风险控制优先)
|
|
|
|
|
|
shares_risk = (account_value * self.risk_per_trade) / risk_per_trade_dollar
|
|
|
|
|
|
# 公式2:基于杠杆限制的最大股数(杠杆约束)
|
|
|
|
|
|
shares_leverage = (self.max_leverage * account_value) / entry_price
|
|
|
|
|
|
# 取两者最小值(满足风险和杠杆双重约束)
|
|
|
|
|
|
max_shares = min(shares_risk, shares_leverage)
|
|
|
|
|
|
# 扣除佣金影响(简化计算:假设佣金从可用资金中扣除)
|
|
|
|
|
|
commission_cost = max_shares * self.commission_per_share
|
|
|
|
|
|
if (account_value - commission_cost) < 0:
|
|
|
|
|
|
return 0 # 扣除佣金后资金不足,不交易
|
|
|
|
|
|
|
|
|
|
|
|
return int(max_shares) # 股数取整
|
|
|
|
|
|
|
|
|
|
|
|
def generate_orb_signals(self):
|
|
|
|
|
|
"""
|
|
|
|
|
|
生成ORB策略信号(每日仅1次交易机会)
|
|
|
|
|
|
- 第一根5分钟K线:确定开盘区间(High1, Low1)
|
|
|
|
|
|
- 第二根5分钟K线:根据第一根K线方向生成多空信号
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.info("开始生成ORB策略信号")
|
|
|
|
|
|
if self.data is None:
|
|
|
|
|
|
raise ValueError("请先调用fetch_intraday_data获取数据")
|
|
|
|
|
|
|
|
|
|
|
|
signals = []
|
|
|
|
|
|
# 按日期分组处理每日数据
|
|
|
|
|
|
for date, daily_data in self.data.groupby("Date"):
|
|
|
|
|
|
daily_data = daily_data.sort_index() # 按时间排序
|
|
|
|
|
|
if len(daily_data) < 2:
|
|
|
|
|
|
continue # 当日K线不足2根,跳过
|
|
|
|
|
|
|
|
|
|
|
|
# 第一根5分钟K线(开盘区间)
|
|
|
|
|
|
first_candle = daily_data.iloc[0]
|
|
|
|
|
|
high1 = first_candle["High"]
|
|
|
|
|
|
low1 = first_candle["Low"]
|
|
|
|
|
|
open1 = first_candle["Open"]
|
|
|
|
|
|
close1 = first_candle["Close"]
|
|
|
|
|
|
|
|
|
|
|
|
# 第二根5分钟K线(entry信号)
|
|
|
|
|
|
second_candle = daily_data.iloc[1]
|
|
|
|
|
|
entry_price = second_candle["Open"] # entry价格=第二根K线开盘价
|
|
|
|
|
|
entry_time = second_candle.date_time # entry时间
|
|
|
|
|
|
|
|
|
|
|
|
# 生成信号:第一根K线方向决定多空(排除十字星:open1 == close1)
|
|
|
|
|
|
if open1 < close1:
|
|
|
|
|
|
# 第一根K线收涨→多头信号
|
|
|
|
|
|
signal = "Long"
|
|
|
|
|
|
stop_price = low1 # 多头止损=第一根K线最低价
|
|
|
|
|
|
elif open1 > close1:
|
|
|
|
|
|
# 第一根K线收跌→空头信号
|
|
|
|
|
|
signal = "Short"
|
|
|
|
|
|
stop_price = high1 # 空头止损=第一根K线最高价
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 十字星→无信号
|
2025-09-01 10:01:21 +00:00
|
|
|
|
signal = None
|
2025-08-31 03:20:59 +00:00
|
|
|
|
stop_price = None
|
|
|
|
|
|
|
|
|
|
|
|
signals.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"Date": date,
|
|
|
|
|
|
"EntryTime": entry_time,
|
|
|
|
|
|
"Signal": signal,
|
|
|
|
|
|
"EntryPrice": entry_price,
|
|
|
|
|
|
"StopPrice": stop_price,
|
|
|
|
|
|
"High1": high1,
|
|
|
|
|
|
"Low1": low1,
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 将信号合并到原始数据
|
|
|
|
|
|
signals_df = pd.DataFrame(signals)
|
|
|
|
|
|
# 确保Date列类型一致,将Date转换为datetime64[ns]类型
|
2025-09-01 10:01:21 +00:00
|
|
|
|
signals_df["Date"] = pd.to_datetime(signals_df["Date"])
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# 使用merge而不是join来合并数据,根据signals_df的EntryTime与self.data的date_time进行匹配
|
|
|
|
|
|
# TODO: 这里需要优化
|
2025-09-01 10:01:21 +00:00
|
|
|
|
self.data = self.data.merge(
|
|
|
|
|
|
signals_df, left_on="date_time", right_on="EntryTime", how="left"
|
|
|
|
|
|
)
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# 将Date_x和Date_y合并为Date
|
|
|
|
|
|
self.data["Date"] = self.data["Date_x"].combine_first(self.data["Date_y"])
|
|
|
|
|
|
# 删除Date_x和Date_y
|
|
|
|
|
|
self.data.drop(columns=["Date_x", "Date_y"], inplace=True)
|
|
|
|
|
|
logger.info(
|
|
|
|
|
|
f"生成信号完成:共{len(signals_df)}个交易日,其中多头{sum(signals_df['Signal']=='Long')}次,空头{sum(signals_df['Signal']=='Short')}次"
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def backtest(self, profit_target_multiple=10):
|
|
|
|
|
|
"""
|
|
|
|
|
|
回测ORB策略
|
|
|
|
|
|
:param profit_target_multiple: 盈利目标倍数(默认10倍$R,即10R)
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.info(f"开始回测ORB策略:盈利目标倍数={profit_target_multiple}")
|
|
|
|
|
|
if "Signal" not in self.data.columns:
|
|
|
|
|
|
raise ValueError("请先调用generate_orb_signals生成策略信号")
|
|
|
|
|
|
|
|
|
|
|
|
account_value = self.initial_capital # 初始账户价值
|
|
|
|
|
|
current_position = None # 当前持仓(None=空仓,Long/Short=持仓)
|
|
|
|
|
|
equity_history = [account_value] # 净值历史
|
|
|
|
|
|
trade_id = 0 # 交易ID
|
|
|
|
|
|
|
|
|
|
|
|
# 按时间遍历数据(每日仅处理第二根K线后的信号)
|
|
|
|
|
|
for date, daily_data in self.data.groupby("Date"):
|
|
|
|
|
|
daily_data = daily_data.sort_index()
|
|
|
|
|
|
if len(daily_data) < 2:
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
# 获取当日信号(第二根K线的信号)
|
|
|
|
|
|
signal_row = (
|
|
|
|
|
|
daily_data[~pd.isna(daily_data["Signal"])].iloc[0]
|
|
|
|
|
|
if sum(~pd.isna(daily_data["Signal"])) > 0
|
|
|
|
|
|
else None
|
|
|
|
|
|
)
|
|
|
|
|
|
if signal_row is None:
|
|
|
|
|
|
# 无信号→当日不交易,净值保持不变
|
|
|
|
|
|
equity_history.append(account_value)
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
# 提取信号参数
|
|
|
|
|
|
signal = signal_row["Signal"]
|
|
|
|
|
|
if pd.isna(signal):
|
|
|
|
|
|
continue
|
2025-09-01 10:01:21 +00:00
|
|
|
|
|
2025-08-31 03:20:59 +00:00
|
|
|
|
entry_price = signal_row["EntryPrice"]
|
|
|
|
|
|
stop_price = signal_row["StopPrice"]
|
|
|
|
|
|
high1 = signal_row["High1"]
|
|
|
|
|
|
low1 = signal_row["Low1"]
|
|
|
|
|
|
risk_assumed = abs(entry_price - stop_price) # 计算$R
|
|
|
|
|
|
profit_target = (
|
|
|
|
|
|
entry_price + (risk_assumed * profit_target_multiple)
|
|
|
|
|
|
if signal == "Long"
|
|
|
|
|
|
else entry_price - (risk_assumed * profit_target_multiple)
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 计算交易股数
|
|
|
|
|
|
shares = self.calculate_shares(account_value, entry_price, stop_price)
|
|
|
|
|
|
if shares == 0:
|
|
|
|
|
|
# 股数为0→不交易
|
|
|
|
|
|
equity_history.append(account_value)
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
# 计算佣金(买入/卖出各收一次)
|
|
|
|
|
|
total_commission = shares * self.commission_per_share * 2 # 往返佣金
|
|
|
|
|
|
|
|
|
|
|
|
# 模拟日内持仓:寻找止损/止盈触发点,或当日收盘平仓
|
|
|
|
|
|
daily_prices = daily_data[
|
|
|
|
|
|
daily_data.date_time > signal_row.date_time
|
|
|
|
|
|
] # 从entry时间开始遍历
|
|
|
|
|
|
exit_price = None
|
|
|
|
|
|
exit_time = None
|
|
|
|
|
|
exit_reason = None
|
|
|
|
|
|
|
|
|
|
|
|
for idx, (time, row) in enumerate(daily_prices.iterrows()):
|
|
|
|
|
|
high = row["High"]
|
|
|
|
|
|
low = row["Low"]
|
|
|
|
|
|
close = row["Close"]
|
|
|
|
|
|
|
|
|
|
|
|
# 检查止损/止盈条件
|
|
|
|
|
|
if signal == "Long":
|
|
|
|
|
|
# 多头:跌破止损→止损;突破止盈→止盈
|
|
|
|
|
|
if low <= stop_price:
|
|
|
|
|
|
exit_price = stop_price
|
|
|
|
|
|
exit_reason = "Stop Loss"
|
2025-09-01 10:01:21 +00:00
|
|
|
|
exit_time = row["date_time"]
|
2025-08-31 03:20:59 +00:00
|
|
|
|
break
|
|
|
|
|
|
elif high >= profit_target:
|
|
|
|
|
|
exit_price = profit_target
|
|
|
|
|
|
exit_reason = "Profit Target (10R)"
|
2025-09-01 10:01:21 +00:00
|
|
|
|
exit_time = row["date_time"]
|
2025-08-31 03:20:59 +00:00
|
|
|
|
break
|
|
|
|
|
|
elif signal == "Short":
|
|
|
|
|
|
# 空头:突破止损→止损;跌破止盈→止盈
|
|
|
|
|
|
if high >= stop_price:
|
|
|
|
|
|
exit_price = stop_price
|
|
|
|
|
|
exit_reason = "Stop Loss"
|
2025-09-01 10:01:21 +00:00
|
|
|
|
exit_time = row["date_time"]
|
2025-08-31 03:20:59 +00:00
|
|
|
|
break
|
|
|
|
|
|
elif low <= profit_target:
|
|
|
|
|
|
exit_price = profit_target
|
|
|
|
|
|
exit_reason = "Profit Target (10R)"
|
2025-09-01 10:01:21 +00:00
|
|
|
|
exit_time = row["date_time"]
|
2025-08-31 03:20:59 +00:00
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
# 若未触发止损/止盈,当日收盘平仓
|
|
|
|
|
|
if exit_price is None:
|
|
|
|
|
|
exit_price = daily_prices.iloc[-1]["Close"]
|
|
|
|
|
|
exit_reason = "End of Day (EoD)"
|
|
|
|
|
|
exit_time = daily_prices.iloc[-1].date_time
|
|
|
|
|
|
|
2025-09-01 10:01:21 +00:00
|
|
|
|
initial_account_value = account_value
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# 计算盈亏
|
|
|
|
|
|
if signal == "Long":
|
|
|
|
|
|
profit_loss = (exit_price - entry_price) * shares - total_commission
|
|
|
|
|
|
else: # Short
|
|
|
|
|
|
profit_loss = (entry_price - exit_price) * shares - total_commission
|
|
|
|
|
|
|
2025-09-01 10:01:21 +00:00
|
|
|
|
# 计算盈亏百分比,profit_loss除以当期初始资金
|
|
|
|
|
|
profit_loss_percentage = (profit_loss / initial_account_value) * 100
|
|
|
|
|
|
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# 更新账户价值
|
|
|
|
|
|
account_value += profit_loss
|
|
|
|
|
|
account_value = max(account_value, 0) # 账户价值不能为负
|
|
|
|
|
|
|
|
|
|
|
|
# 记录交易
|
|
|
|
|
|
self.trades.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"TradeID": trade_id,
|
|
|
|
|
|
"Date": date,
|
|
|
|
|
|
"Signal": signal,
|
2025-09-01 10:01:21 +00:00
|
|
|
|
"EntryTime": signal_row.date_time.strftime("%Y-%m-%d %H:%M:%S"),
|
2025-08-31 03:20:59 +00:00
|
|
|
|
"EntryPrice": entry_price,
|
2025-09-01 10:01:21 +00:00
|
|
|
|
"ExitTime": exit_time.strftime("%Y-%m-%d %H:%M:%S"),
|
2025-08-31 03:20:59 +00:00
|
|
|
|
"ExitPrice": exit_price,
|
|
|
|
|
|
"Shares": shares,
|
|
|
|
|
|
"RiskAssumed": risk_assumed,
|
|
|
|
|
|
"ProfitLoss": profit_loss,
|
2025-09-01 10:01:21 +00:00
|
|
|
|
"ProfitLossPercentage": profit_loss_percentage,
|
2025-08-31 03:20:59 +00:00
|
|
|
|
"ExitReason": exit_reason,
|
2025-09-01 10:01:21 +00:00
|
|
|
|
"AccountValueInitial": initial_account_value,
|
2025-08-31 03:20:59 +00:00
|
|
|
|
"AccountValueAfter": account_value,
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 记录净值
|
|
|
|
|
|
equity_history.append(account_value)
|
|
|
|
|
|
trade_id += 1
|
|
|
|
|
|
|
|
|
|
|
|
# 生成净值曲线
|
2025-09-01 10:01:21 +00:00
|
|
|
|
self.create_equity_curve()
|
2025-08-31 03:20:59 +00:00
|
|
|
|
|
|
|
|
|
|
# 输出回测结果
|
|
|
|
|
|
trades_df = pd.DataFrame(self.trades)
|
|
|
|
|
|
total_return = (
|
|
|
|
|
|
(account_value - self.initial_capital) / self.initial_capital * 100
|
|
|
|
|
|
)
|
|
|
|
|
|
win_rate = (
|
|
|
|
|
|
(trades_df["ProfitLoss"] > 0).sum() / len(trades_df) * 100
|
|
|
|
|
|
if len(trades_df) > 0
|
|
|
|
|
|
else 0
|
|
|
|
|
|
)
|
2025-09-01 10:01:21 +00:00
|
|
|
|
# 计算盈亏比
|
|
|
|
|
|
profit_sum = trades_df[trades_df["ProfitLoss"] > 0]["ProfitLoss"].sum()
|
|
|
|
|
|
loss_sum = abs(trades_df[trades_df["ProfitLoss"] < 0]["ProfitLoss"].sum())
|
|
|
|
|
|
if loss_sum == 0:
|
|
|
|
|
|
profit_loss_ratio = float('inf')
|
|
|
|
|
|
else:
|
|
|
|
|
|
profit_loss_ratio = (profit_sum / loss_sum) * 100
|
2025-08-31 03:20:59 +00:00
|
|
|
|
|
|
|
|
|
|
logger.info("\n" + "=" * 50)
|
|
|
|
|
|
logger.info("ORB策略回测结果")
|
|
|
|
|
|
logger.info("=" * 50)
|
|
|
|
|
|
logger.info(f"初始资金:${self.initial_capital:,.2f}")
|
|
|
|
|
|
logger.info(f"最终资金:${account_value:,.2f}")
|
|
|
|
|
|
logger.info(f"总收益率:{total_return:.2f}%")
|
|
|
|
|
|
logger.info(f"总交易次数:{len(trades_df)}")
|
2025-09-01 10:01:21 +00:00
|
|
|
|
logger.info(f"盈亏比:{profit_loss_ratio:.2f}%")
|
2025-08-31 03:20:59 +00:00
|
|
|
|
logger.info(f"胜率:{win_rate:.2f}%")
|
|
|
|
|
|
if len(trades_df) > 0:
|
|
|
|
|
|
logger.info(f"平均每笔盈亏:${trades_df['ProfitLoss'].mean():.2f}")
|
|
|
|
|
|
logger.info(f"最大单笔盈利:${trades_df['ProfitLoss'].max():.2f}")
|
|
|
|
|
|
logger.info(f"最大单笔亏损:${trades_df['ProfitLoss'].min():.2f}")
|
|
|
|
|
|
|
2025-09-01 10:01:21 +00:00
|
|
|
|
def create_equity_curve(self):
|
|
|
|
|
|
"""
|
|
|
|
|
|
创建账户净值曲线
|
|
|
|
|
|
"""
|
|
|
|
|
|
equity_curve_list = []
|
|
|
|
|
|
# 将self.data.index[0].Date的值转换为字符串,且格式为YYYY-MM-DD
|
|
|
|
|
|
first_date = self.data.iloc[0].date_time.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
first_open = float(self.data.iloc[0].Open)
|
|
|
|
|
|
equity_curve_list.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"DateTime": first_date,
|
|
|
|
|
|
"AccountValue": self.initial_capital,
|
|
|
|
|
|
"MarketPrice": first_open,
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
for trade in self.trades:
|
|
|
|
|
|
equity_curve_list.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"DateTime": trade["ExitTime"],
|
|
|
|
|
|
"AccountValue": trade["AccountValueAfter"],
|
|
|
|
|
|
"MarketPrice": trade["ExitPrice"],
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
self.equity_curve = pd.DataFrame(equity_curve_list)
|
|
|
|
|
|
self.equity_curve.sort_values(by="DateTime", inplace=True)
|
|
|
|
|
|
self.equity_curve.reset_index(drop=True, inplace=True)
|
|
|
|
|
|
|
2025-08-31 03:20:59 +00:00
|
|
|
|
def plot_equity_curve(self):
|
|
|
|
|
|
"""
|
|
|
|
|
|
绘制账户净值曲线
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.info("开始绘制账户净值曲线")
|
|
|
|
|
|
if self.equity_curve is None:
|
|
|
|
|
|
raise ValueError("请先调用backtest进行回测")
|
2025-09-01 10:01:21 +00:00
|
|
|
|
|
2025-08-31 03:20:59 +00:00
|
|
|
|
# seaborn风格设置
|
|
|
|
|
|
sns.set_theme(style="whitegrid")
|
|
|
|
|
|
# plt.rcParams['font.family'] = "SimHei"
|
|
|
|
|
|
plt.rcParams["font.sans-serif"] = ["SimHei"] # 也可直接用字体名
|
|
|
|
|
|
plt.rcParams["font.size"] = 11 # 设置字体大小
|
|
|
|
|
|
plt.rcParams["axes.unicode_minus"] = False # 解决负号显示问题
|
|
|
|
|
|
|
2025-09-01 10:01:21 +00:00
|
|
|
|
symbol = self.data.iloc[0].symbol
|
|
|
|
|
|
bar = self.data.iloc[0].bar
|
|
|
|
|
|
first_account_value = self.equity_curve.iloc[0]["AccountValue"]
|
|
|
|
|
|
first_market_price = self.equity_curve.iloc[0]["MarketPrice"]
|
|
|
|
|
|
account_value_to_1 = self.equity_curve["AccountValue"] / first_account_value
|
|
|
|
|
|
market_price_to_1 = self.equity_curve["MarketPrice"] / first_market_price
|
2025-08-31 03:20:59 +00:00
|
|
|
|
plt.figure(figsize=(12, 6))
|
2025-09-01 10:01:21 +00:00
|
|
|
|
plt.plot(self.equity_curve["DateTime"], account_value_to_1, label="账户价值", color='blue', linewidth=2, marker='o', markersize=4)
|
|
|
|
|
|
plt.plot(self.equity_curve["DateTime"], market_price_to_1, label="市场价格", color='green', linewidth=2, marker='s', markersize=4)
|
|
|
|
|
|
plt.title(f"ORB策略账户净值曲线 {symbol} {bar}", fontsize=14, fontweight='bold')
|
|
|
|
|
|
plt.xlabel("时间", fontsize=12)
|
|
|
|
|
|
plt.ylabel("涨跌变化", fontsize=12)
|
|
|
|
|
|
plt.legend(fontsize=11)
|
2025-08-31 03:20:59 +00:00
|
|
|
|
plt.grid(True, alpha=0.3)
|
2025-09-01 10:01:21 +00:00
|
|
|
|
|
|
|
|
|
|
# 设置x轴标签,避免matplotlib警告
|
|
|
|
|
|
# 选择合适的时间间隔显示标签,避免过于密集
|
|
|
|
|
|
if len(self.equity_curve) > 30:
|
|
|
|
|
|
# 如果数据点较多,选择间隔显示,但确保第一条和最后一条始终显示
|
|
|
|
|
|
step = max(1, len(self.equity_curve) // 30)
|
|
|
|
|
|
|
|
|
|
|
|
# 创建标签索引列表,确保包含首尾数据
|
|
|
|
|
|
label_indices = [0] # 第一条
|
|
|
|
|
|
|
|
|
|
|
|
# 添加中间间隔的标签
|
|
|
|
|
|
for i in range(step, len(self.equity_curve) - 1, step):
|
|
|
|
|
|
label_indices.append(i)
|
|
|
|
|
|
|
|
|
|
|
|
# 添加最后一条(如果还没有包含的话)
|
|
|
|
|
|
if len(self.equity_curve) - 1 not in label_indices:
|
|
|
|
|
|
label_indices.append(len(self.equity_curve) - 1)
|
|
|
|
|
|
|
|
|
|
|
|
# 设置x轴标签
|
|
|
|
|
|
plt.xticks(self.equity_curve["DateTime"].iloc[label_indices],
|
|
|
|
|
|
self.equity_curve["DateTime"].iloc[label_indices],
|
|
|
|
|
|
rotation=45, ha='right', fontsize=10)
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 如果数据点较少,全部显示
|
|
|
|
|
|
plt.xticks(self.equity_curve["DateTime"],
|
|
|
|
|
|
self.equity_curve["DateTime"],
|
|
|
|
|
|
rotation=45, ha='right', fontsize=10)
|
|
|
|
|
|
plt.tight_layout()
|
|
|
|
|
|
save_path = f"{self.output_chart_folder}/{symbol}_{bar}_orb_strategy_equity_curve.png"
|
|
|
|
|
|
plt.savefig(save_path, dpi=150, bbox_inches='tight')
|
|
|
|
|
|
plt.close()
|
2025-08-31 03:20:59 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ------------------- 策略示例:回测QQQ的ORB策略(2016-2023) -------------------
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
# 初始化ORB策略
|
|
|
|
|
|
orb_strategy = ORBStrategy(
|
|
|
|
|
|
initial_capital=25000,
|
|
|
|
|
|
max_leverage=4,
|
|
|
|
|
|
risk_per_trade=0.01,
|
|
|
|
|
|
commission_per_share=0.0005,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 1. 获取QQQ的5分钟日内数据(2024-2025,注意:yfinance免费版可能限制历史日内数据,建议用专业数据源)
|
|
|
|
|
|
orb_strategy.fetch_intraday_data(
|
|
|
|
|
|
symbol="ETH-USDT", start_date="2025-05-15", end_date="2025-08-20", interval="5m"
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 2. 生成ORB策略信号
|
|
|
|
|
|
orb_strategy.generate_orb_signals()
|
|
|
|
|
|
|
|
|
|
|
|
# 3. 回测策略(盈利目标10R)
|
|
|
|
|
|
orb_strategy.backtest(profit_target_multiple=10)
|
|
|
|
|
|
|
|
|
|
|
|
# 4. 绘制净值曲线
|
|
|
|
|
|
orb_strategy.plot_equity_curve()
|