crypto_quant/play.py

401 lines
15 KiB
Python
Raw Normal View History

2025-07-21 07:46:48 +00:00
import okx.Account as Account
import okx.Trade as Trade
import okx.MarketData as Market
import okx.PublicData as Public
2025-07-21 05:05:59 +00:00
import pandas as pd
import numpy as np
import time
from datetime import datetime
import json
class BitcoinQuantTrader:
def __init__(self, api_key, secret_key, passphrase, sandbox=True):
"""
初始化比特币量化交易器
Args:
api_key: OKX API Key
secret_key: OKX Secret Key
passphrase: OKX API Passphrase
sandbox: 是否使用沙盒环境建议先用沙盒测试
"""
self.api_key = api_key
self.secret_key = secret_key
self.passphrase = passphrase
# 初始化API客户端
2025-07-21 07:46:48 +00:00
flag = "1" if sandbox else "0" # 0:实盘环境 1:沙盒环境
2025-07-21 05:05:59 +00:00
2025-07-21 07:46:48 +00:00
self.account_api = Account.AccountAPI(
api_key=api_key, api_secret_key=secret_key, passphrase=passphrase,
flag=flag
2025-07-21 05:05:59 +00:00
)
2025-07-21 07:46:48 +00:00
self.trade_api = Trade.TradeAPI(
api_key=api_key, api_secret_key=secret_key, passphrase=passphrase,
flag=flag
2025-07-21 05:05:59 +00:00
)
2025-07-21 07:46:48 +00:00
self.market_api = Market.MarketAPI(
api_key=api_key, api_secret_key=secret_key, passphrase=passphrase,
flag=flag
2025-07-21 05:05:59 +00:00
)
2025-07-21 07:46:48 +00:00
self.public_api = Public.PublicAPI(
api_key=api_key, api_secret_key=secret_key, passphrase=passphrase,
flag=flag
2025-07-21 05:05:59 +00:00
)
self.symbol = "BTC-USDT"
self.position_size = 0.001 # 每次交易0.001 BTC
def get_account_balance(self):
"""获取账户余额"""
try:
result = self.account_api.get_account_balance()
if result['code'] == '0':
balances = result['data']
for balance in balances:
2025-07-21 07:46:48 +00:00
details = balance['details']
for detail in details:
if detail['ccy'] == 'USDT':
print(f"USDT余额: {detail['availBal']}")
return float(detail['availBal'])
elif detail['ccy'] == 'BTC':
print(f"BTC余额: {detail['availBal']}")
# return float(detail['availBal'])
2025-07-21 05:05:59 +00:00
else:
print(f"获取余额失败: {result}")
return 0
except Exception as e:
print(f"获取余额异常: {e}")
return 0
def get_current_price(self):
"""获取当前BTC价格"""
try:
result = self.market_api.get_ticker(instId=self.symbol)
if result['code'] == '0':
price = float(result['data'][0]['last'])
print(f"当前BTC价格: ${price:,.2f}")
return price
else:
print(f"获取价格失败: {result}")
return None
except Exception as e:
print(f"获取价格异常: {e}")
return None
def get_kline_data(self, bar='1m', limit=100):
"""获取K线数据"""
try:
result = self.market_api.get_candlesticks(
instId=self.symbol,
bar=bar,
limit=str(limit)
)
if result['code'] == '0':
# 转换为DataFrame
df = pd.DataFrame(result['data'], columns=[
2025-07-21 07:46:48 +00:00
'timestamp', 'open', 'high', 'low', 'close',
'volume', 'volCcy', "volCCyQuote", "confirm"
2025-07-21 05:05:59 +00:00
])
# 转换数据类型
for col in ['open', 'high', 'low', 'close', 'volume']:
df[col] = pd.to_numeric(df[col])
df['timestamp'] = pd.to_datetime(df['timestamp'].astype(int), unit='ms')
return df
else:
print(f"获取K线数据失败: {result}")
return None
except Exception as e:
print(f"获取K线数据异常: {e}")
return None
def calculate_sma(self, df, period=20):
"""计算简单移动平均线"""
return df['close'].rolling(window=period).mean()
def calculate_rsi(self, df, period=14):
"""计算RSI指标"""
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def place_market_order(self, side, size):
"""下市价单"""
2025-07-21 07:46:48 +00:00
if side == 'sell':
try:
result = self.trade_api.place_order(
instId=self.symbol,
tdMode='cash',
side=side,
ordType='market',
sz=str(size)
)
if result['code'] == '0':
print(f"下单成功: {side} {size} BTC")
return result['data'][0]['ordId']
else:
print(f"下单失败: {result}")
return None
except Exception as e:
print(f"下单异常: {e}")
return None
elif side == 'buy':
instrument = self.public_api.get_instruments(instType="SPOT", instId=self.symbol)["data"][0]
min_sz = float(instrument["minSz"]) # 最小交易量
if size < min_sz:
size = min_sz
ticker = self.market_api.get_ticker(instId=self.symbol)
last_price = float(ticker["data"][0]["last"]) # 最新价格
# 买入数量是USDT将BTC转换为USDT
usdt_amount = float(last_price * size)
try:
result = self.trade_api.place_order(
instId=self.symbol,
tdMode="cash",
side=side,
ordType="market",
sz=str(usdt_amount)
)
print("下单结果:", result)
except Exception as e:
print("错误:", str(e))
def get_minimun_order_size(self):
"""获取最小订单数量"""
2025-07-21 05:05:59 +00:00
try:
2025-07-21 07:46:48 +00:00
result = self.public_api.get_instruments(instType="SPOT", instId=self.symbol)
if result["code"] == "0":
instrument = result["data"][0]
min_sz = float(instrument["minSz"]) # 最小交易量BTC
lot_sz = float(instrument["lotSz"]) # 交易量精度
print(f"最小交易量 (minSz): {min_sz} BTC")
print(f"交易量精度 (lotSz): {lot_sz} BTC")
2025-07-21 05:05:59 +00:00
else:
2025-07-21 07:46:48 +00:00
print(f"错误: {result['msg']}")
2025-07-21 05:05:59 +00:00
except Exception as e:
2025-07-21 07:46:48 +00:00
print(f"异常: {str(e)}")
2025-07-21 05:05:59 +00:00
def simple_moving_average_strategy(self):
"""简单移动平均线策略"""
print("\n=== 执行移动平均线策略 ===")
# 获取K线数据
df = self.get_kline_data(bar='5m', limit=50)
if df is None or len(df) < 20:
print("数据不足,无法执行策略")
return
# 计算移动平均线
df['sma_short'] = self.calculate_sma(df, 5) # 短期均线
df['sma_long'] = self.calculate_sma(df, 20) # 长期均线
# 获取最新数据
latest = df.iloc[-1]
prev = df.iloc[-2]
print(f"短期均线: {latest['sma_short']:.2f}")
print(f"长期均线: {latest['sma_long']:.2f}")
print(f"当前价格: {latest['close']:.2f}")
# 策略逻辑:短期均线上穿长期均线买入,下穿卖出
if (latest['sma_short'] > latest['sma_long'] and
prev['sma_short'] <= prev['sma_long']):
print("信号: 买入")
self.place_market_order('buy', self.position_size)
elif (latest['sma_short'] < latest['sma_long'] and
prev['sma_short'] >= prev['sma_long']):
print("信号: 卖出")
self.place_market_order('sell', self.position_size)
else:
print("信号: 持仓观望")
def rsi_strategy(self):
"""RSI策略"""
print("\n=== 执行RSI策略 ===")
# 获取K线数据
df = self.get_kline_data(bar='5m', limit=50)
if df is None or len(df) < 30:
print("数据不足,无法执行策略")
return
# 计算RSI
df['rsi'] = self.calculate_rsi(df, 14)
# 获取最新RSI值
latest_rsi = df['rsi'].iloc[-1]
print(f"当前RSI: {latest_rsi:.2f}")
# 策略逻辑RSI < 30 超卖买入RSI > 70 超买卖出
if latest_rsi < 30:
print("信号: RSI超卖买入")
self.place_market_order('buy', self.position_size)
elif latest_rsi > 70:
print("信号: RSI超买卖出")
self.place_market_order('sell', self.position_size)
else:
print("信号: RSI正常区间持仓观望")
def grid_trading_strategy(self, grid_levels=5, grid_range=0.02):
"""网格交易策略"""
print(f"\n=== 执行网格交易策略 (网格数: {grid_levels}, 范围: {grid_range*100}%) ===")
current_price = self.get_current_price()
if current_price is None:
return
# 计算网格价格
grid_prices = []
for i in range(grid_levels):
price = current_price * (1 + grid_range * (i - grid_levels//2) / grid_levels)
grid_prices.append(price)
print(f"网格价格: {[f'${p:.2f}' for p in grid_prices]}")
# 获取K线数据判断当前价格在哪个网格
df = self.get_kline_data(bar='1m', limit=10)
if df is None:
return
latest_price = df['close'].iloc[-1]
# 找到最近的网格
closest_grid = min(grid_prices, key=lambda x: abs(x - latest_price))
grid_index = grid_prices.index(closest_grid)
print(f"当前价格: ${latest_price:.2f}, 最近网格: ${closest_grid:.2f}")
# 简单的网格策略:价格下跌到网格线买入,上涨到网格线卖出
if latest_price < closest_grid * 0.995: # 价格下跌超过0.5%
print("信号: 价格下跌,网格买入")
self.place_market_order('buy', self.position_size)
elif latest_price > closest_grid * 1.005: # 价格上涨超过0.5%
print("信号: 价格上涨,网格卖出")
self.place_market_order('sell', self.position_size)
else:
print("信号: 价格在网格内,持仓观望")
def run_strategy_loop(self, strategy='sma', interval=60):
"""运行策略循环"""
print(f"开始运行{strategy}策略,间隔{interval}")
while True:
try:
print(f"\n{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
# 检查账户余额
self.get_account_balance()
# 执行策略
if strategy == 'sma':
self.simple_moving_average_strategy()
elif strategy == 'rsi':
self.rsi_strategy()
elif strategy == 'grid':
self.grid_trading_strategy()
else:
print("未知策略")
break
print(f"等待{interval}秒后继续...")
time.sleep(interval)
except KeyboardInterrupt:
print("\n策略运行被用户中断")
break
except Exception as e:
print(f"策略运行异常: {e}")
time.sleep(interval)
def main():
"""主函数"""
print("=== 比特币量化交易系统 ===")
# 导入配置
try:
from config import API_KEY, SECRET_KEY, PASSPHRASE, TRADING_CONFIG, TIME_CONFIG
except ImportError:
print("错误找不到config.py文件请确保配置文件存在")
return
# 检查是否配置了API密钥
if API_KEY == "your_api_key_here":
print("请先在config.py中配置你的OKX API密钥")
print("1. 登录OKX官网")
print("2. 进入API管理页面")
print("3. 创建API Key、Secret Key和Passphrase")
print("4. 将密钥填入config.py文件中的相应位置")
return
# 创建交易器实例
trader = BitcoinQuantTrader(
API_KEY, SECRET_KEY, PASSPHRASE,
sandbox=TRADING_CONFIG["sandbox"]
)
# 显示菜单
while True:
print("\n请选择操作:")
print("1. 查看账户余额")
print("2. 查看当前价格")
print("3. 执行移动平均线策略")
print("4. 执行RSI策略")
print("5. 执行网格交易策略")
print("6. 运行策略循环")
2025-07-21 07:46:48 +00:00
print("7. 买入测试")
print("8. 卖出测试")
print("9. 获取最小交易量")
2025-07-21 05:05:59 +00:00
print("0. 退出")
2025-07-21 07:46:48 +00:00
choice = input("请输入选择 (0-9): ").strip()
2025-07-21 05:05:59 +00:00
if choice == '0':
print("退出程序")
break
elif choice == '1':
trader.get_account_balance()
elif choice == '2':
trader.get_current_price()
elif choice == '3':
trader.simple_moving_average_strategy()
elif choice == '4':
trader.rsi_strategy()
elif choice == '5':
trader.grid_trading_strategy()
elif choice == '6':
strategy = input("选择策略 (sma/rsi/grid): ").strip()
interval = int(input("设置间隔秒数 (默认60): ") or "60")
trader.run_strategy_loop(strategy, interval)
2025-07-21 07:46:48 +00:00
elif choice == '7':
position_size = 0.01
input_size = input("请输入买入数量: ")
if input_size:
try:
position_size = float(input_size)
print(f"买入{position_size}BTC")
trader.place_market_order('buy', position_size)
except ValueError:
print(f"输入无效,默认买入{position_size}BTC")
elif choice == '8':
position_size = 0.01
input_size = input("请输入卖出数量: ")
if input_size:
try:
position_size = float(input_size)
print(f"卖出{position_size}BTC")
trader.place_market_order('sell', position_size)
except ValueError:
print(f"输入无效,默认卖出{position_size}BTC")
elif choice == '9':
trader.get_minimun_order_size()
2025-07-21 05:05:59 +00:00
else:
print("无效选择,请重新输入")
if __name__ == "__main__":
main()