crypto_quant/huge_volume_main.py

517 lines
22 KiB
Python
Raw Normal View History

from core.biz.huge_volume import HugeVolume
2025-08-01 08:18:36 +00:00
from core.biz.huge_volume_chart import HugeVolumeChart
from core.db.db_market_data import DBMarketData
from core.db.db_huge_volume_data import DBHugeVolumeData
from core.utils import timestamp_to_datetime, transform_date_time_to_timestamp
from market_data_main import MarketDataMain
from core.wechat import Wechat
import logging
from config import MONITOR_CONFIG, MYSQL_CONFIG, WINDOW_SIZE
from datetime import datetime, timedelta
import pandas as pd
import os
import re
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
class HugeVolumeMain:
def __init__(self, threshold: float = 2.0):
mysql_user = MYSQL_CONFIG.get("user", "xch")
mysql_password = MYSQL_CONFIG.get("password", "")
if not mysql_password:
raise ValueError("MySQL password is not set")
mysql_host = MYSQL_CONFIG.get("host", "localhost")
mysql_port = MYSQL_CONFIG.get("port", 3306)
mysql_database = MYSQL_CONFIG.get("database", "okx")
self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}"
self.huge_volume = HugeVolume()
self.db_market_data = DBMarketData(self.db_url)
self.db_huge_volume_data = DBHugeVolumeData(self.db_url)
self.market_data_main = MarketDataMain()
self.threshold = threshold
self.output_folder = "./output/huge_volume_statistics/"
os.makedirs(self.output_folder, exist_ok=True)
2025-08-01 08:18:36 +00:00
def batch_initial_detect_volume_spike(
self, window_size: int = 50, start: str = None
):
for symbol in self.market_data_main.symbols:
for bar in self.market_data_main.bars:
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-15 00:00:00"
)
data = self.detect_volume_spike(
2025-08-01 08:18:36 +00:00
symbol,
bar,
window_size,
start,
only_output_huge_volume=False,
is_update=False,
)
if data is not None and len(data) > 0:
logging.info(f"此次初始化巨量交易数据: {len(data)}")
else:
logging.info(f"此次初始化巨量交易数据为空")
def detect_volume_spike(
self,
symbol: str = "XCH-USDT",
bar: str = "5m",
window_size: int = 50,
start: str = "2025-05-01 00:00:00",
end: str = None,
only_output_huge_volume: bool = False,
is_update: bool = False,
):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
2025-08-01 08:18:36 +00:00
logging.info(
f"开始处理巨量交易数据: {symbol} {bar} 窗口大小: {window_size}{start}{end}"
)
data = self.db_market_data.query_market_data_by_symbol_bar(
symbol, bar, start, end
)
if data is None:
2025-08-01 08:18:36 +00:00
logging.warning(
f"获取行情数据失败: {symbol} {bar} 窗口大小: {window_size}{start}{end}"
)
return None
else:
if len(data) == 0:
2025-08-01 08:18:36 +00:00
logging.warning(
f"获取行情数据为空: {symbol} {bar} 窗口大小: {window_size}{start}{end}"
)
return None
else:
if isinstance(data, list):
data = pd.DataFrame(data)
elif isinstance(data, dict):
data = pd.DataFrame([data])
data = self.huge_volume.detect_huge_volume(
data=data,
window_size=window_size,
threshold=self.threshold,
check_price=True,
only_output_huge_volume=only_output_huge_volume,
output_excel=False,
)
if data is not None:
if is_update:
for index, row in data.iterrows():
2025-08-01 08:18:36 +00:00
exist_huge_volume_data = self.db_huge_volume_data.query_data_by_symbol_bar_window_size_timestamp(
symbol, bar, window_size, row["timestamp"]
)
if exist_huge_volume_data is not None:
# remove the exist_huge_volume_data from data
data = data[
data["timestamp"] != exist_huge_volume_data["timestamp"]
]
if data is not None and len(data) > 0:
self.db_huge_volume_data.insert_data_to_mysql(data)
else:
logging.warning(
f"此次处理巨量交易数据为空: {symbol} {bar} {start} {end}"
)
return data
else:
return None
def batch_update_volume_spike(self, window_size: int = 50):
for symbol in self.market_data_main.symbols:
for bar in self.market_data_main.bars:
self.update_volume_spike(symbol, bar, window_size)
def update_volume_spike(self, symbol: str, bar: str, window_size: int = 50):
try:
self.market_data_main.update_data(symbol, bar)
latest_huge_volume_data = self.db_huge_volume_data.query_latest_data(
symbol, bar, window_size
)
if latest_huge_volume_data is None or len(latest_huge_volume_data) == 0:
2025-08-04 14:36:25 +00:00
self.detect_volume_spike(
symbol=symbol,
bar=bar,
window_size=window_size,
only_output_huge_volume=False,
)
return
else:
earliest_date_time = latest_huge_volume_data["date_time"]
earliest_timestamp = latest_huge_volume_data["timestamp"]
seconds = self.get_seconds_by_bar(bar)
earliest_timestamp = earliest_timestamp - (
(window_size - 1) * seconds * 1000
)
earliest_date_time = timestamp_to_datetime(earliest_timestamp)
data = self.detect_volume_spike(
symbol=symbol,
bar=bar,
window_size=window_size,
start=earliest_date_time,
only_output_huge_volume=False,
is_update=True,
)
logging.info(
f"更新巨量交易数据: {symbol} {bar} 窗口大小: {window_size}{earliest_date_time}{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
if data is not None and len(data) > 0:
logging.info(f"此次更新巨量交易数据: {len(data)}")
else:
logging.info(f"此次更新巨量交易数据为空")
except Exception as e:
2025-08-01 08:18:36 +00:00
logging.error(
f"更新巨量交易数据失败: {symbol} {bar} 窗口大小: {window_size}{earliest_date_time}{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: {e}"
)
def get_seconds_by_bar(self, bar: str):
"""
根据bar获取秒数
bar: 1s/1m/3m/5m/15m/30m/1H/2H/4H/6H/12H/1D/2D/3D/1W/1M/3M
:param bar: 时间周期
:return: 秒数
"""
if bar == "1s":
return 1
elif bar == "1m":
return 60
elif bar == "3m":
return 180
elif bar == "5m":
return 300
elif bar == "15m":
return 900
elif bar == "30m":
return 1800
elif bar == "1H":
return 3600
elif bar == "2H":
return 7200
elif bar == "4H":
return 14400
elif bar == "6H":
return 21600
elif bar == "12H":
return 43200
elif bar == "1D":
return 86400
elif bar == "2D":
return 172800
elif bar == "3D":
return 259200
elif bar == "1W":
return 604800
elif bar == "1M":
return 2592000
elif bar == "3M":
return 7776000
else:
raise ValueError(f"不支持的bar: {bar}")
def next_periods_rise_or_fall(
self,
symbol: str,
bar: str,
window_size: int = 50,
start: str = None,
end: str = None,
periods: list = [3, 5],
):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
periods_text = ", ".join([str(period) for period in periods])
2025-08-01 08:18:36 +00:00
logging.info(
f"开始计算巨量出现后,之后{periods_text}个周期,上涨或下跌的比例: {symbol} {bar} 窗口大小: {window_size}{start}{end}"
)
volume_statistics_data = (
self.db_huge_volume_data.query_huge_volume_data_by_symbol_bar_window_size(
symbol, bar, window_size, start, end
)
)
if volume_statistics_data is None or len(volume_statistics_data) == 0:
2025-08-01 08:18:36 +00:00
logging.warning(
f"获取巨量交易数据为空: {symbol} {bar} 窗口大小: {window_size}{start}{end}"
)
return None
else:
if isinstance(volume_statistics_data, list):
volume_statistics_data = pd.DataFrame(volume_statistics_data)
elif isinstance(volume_statistics_data, dict):
volume_statistics_data = pd.DataFrame([volume_statistics_data])
2025-08-01 08:18:36 +00:00
if volume_statistics_data is not None and len(volume_statistics_data) > 0:
# 根据timestamp排序
2025-08-01 08:18:36 +00:00
volume_statistics_data = volume_statistics_data.sort_values(
by="timestamp", ascending=True
)
volume_statistics_data["window_size"] = window_size
volume_statistics_data = volume_statistics_data[
[
"symbol",
"bar",
"window_size",
"timestamp",
"date_time",
"open",
"high",
"low",
"close",
"volume",
"huge_volume",
"volume_ratio",
"volume_80_20_price_spike",
"price_80_high",
"price_20_low",
"volume_90_10_price_spike",
"price_90_high",
"price_10_low",
]
]
volume_statistics_data = volume_statistics_data.reset_index(drop=True)
huge_volume_data, result_data = self.huge_volume.next_periods_rise_or_fall(
data=volume_statistics_data, window_size=window_size, periods=periods
)
return huge_volume_data, result_data
2025-08-04 14:36:25 +00:00
def send_huge_volume_data_to_wechat(self, start: str = None, end: str = None):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
2025-08-04 14:36:25 +00:00
start_timestamp = transform_date_time_to_timestamp(start)
end_timestamp = transform_date_time_to_timestamp(end)
2025-08-04 14:36:25 +00:00
start_date_time = timestamp_to_datetime(start_timestamp)
end_date_time = timestamp_to_datetime(end_timestamp)
logging.info(f"开始获取巨量交易数据: {start}{end}")
huge_volume_data = self.db_huge_volume_data.query_huge_volume_records(
2025-08-04 14:36:25 +00:00
start=start_timestamp, end=end_timestamp
)
if huge_volume_data is None or len(huge_volume_data) == 0:
logging.warning(f"获取巨量交易数据为空: {start}{end}")
return
else:
if isinstance(huge_volume_data, list):
huge_volume_data = pd.DataFrame(huge_volume_data)
else:
huge_volume_data = pd.DataFrame([huge_volume_data])
# 过滤huge_volume_data要求huge_volume为1且(price_80_high == 1 or price_90_high == 1 or price_20_low == 1 or price_10_low == 1)
huge_volume_data = huge_volume_data[huge_volume_data["huge_volume"] == 1]
# 过滤huge_volume_data要求(price_80_high == 1 or price_90_high == 1 or price_20_low == 1 or price_10_low == 1)
huge_volume_data = huge_volume_data[
2025-08-04 14:36:25 +00:00
(huge_volume_data["price_90_high"] == 1)
| (huge_volume_data["price_10_low"] == 1)
]
# 过滤huge_volume_data要求volume_ratio > 10
huge_volume_data = huge_volume_data[huge_volume_data["volume_ratio"] > 10]
# 根据symbol, bar, window_size, timestamp排序
2025-08-04 14:36:25 +00:00
huge_volume_data = huge_volume_data.sort_values(
by=["symbol", "bar", "window_size", "timestamp"], ascending=True
)
huge_volume_data = huge_volume_data.reset_index(drop=True)
logging.info(f"获取巨量交易数据: {len(huge_volume_data)}")
contents = []
contents.append(f"# 放量交易数据: {start_date_time}{end_date_time}")
symbol_list = huge_volume_data["symbol"].unique()
# 根据symbol_list排序
symbol_list.sort()
for symbol in symbol_list:
contents = []
contents.append(f"# 放量交易数据: {start_date_time}{end_date_time}")
contents.append(f"## 币种: {symbol}")
symbol_data = huge_volume_data[huge_volume_data["symbol"] == symbol]
2025-08-04 14:36:25 +00:00
symbol_data = symbol_data.sort_values(
by=["bar", "window_size", "timestamp"], ascending=True
)
symbol_data = symbol_data.reset_index(drop=True)
for index, row in symbol_data.iterrows():
2025-08-04 14:36:25 +00:00
if row["huge_volume"] == 1 and (
row["price_80_high"] == 1
or row["price_90_high"] == 1
or row["price_20_low"] == 1
or row["price_10_low"] == 1
):
if row["price_90_high"] == 1:
price_position_text = "90%分位数高点"
2025-08-04 14:36:25 +00:00
elif row["price_80_high"] == 1:
price_position_text = "80%分位数高点"
else:
price_position_text = ""
if price_position_text == "":
2025-08-04 14:36:25 +00:00
if row["price_10_low"] == 1:
price_position_text = "10%分位数低点"
2025-08-04 14:36:25 +00:00
elif row["price_20_low"] == 1:
price_position_text = "20%分位数低点"
else:
price_position_text = ""
2025-08-04 14:36:25 +00:00
open_price = str(round(row["open"], 6))
high = str(round(row["high"], 6))
low = str(round(row["low"], 6))
close = str(round(row["close"], 6))
volume = str(round(row["volume"], 6))
volCCyQuote = str(round(row["volCCyQuote"], 6))
volume_ratio = str(round(row["volume_ratio"], 6))
contents.append(
f"交易周期: {row['bar']}, 滑动窗口: {row['window_size']} , 发生时间: {row['date_time']}"
)
contents.append(
f"开盘价: {open_price}, 最高价: {high}, 最低价: {low}, 收盘价: {close}"
)
contents.append(
f"成交量: {volume}, 成交量USDT: {volCCyQuote}, 交易量比率: {volume_ratio}"
)
contents.append(f"价格分位: {price_position_text}")
contents.append(f"--------------------------------")
text = "\n\n".join(contents)
# 获得text的字节数
2025-08-04 14:36:25 +00:00
text_length = len(text.encode("utf-8"))
logging.info(f"发送巨量交易数据到微信,字节数: {text_length}")
# with open(os.path.join(self.output_folder, "huge_volume_data.md"), "w", encoding="utf-8") as f:
# f.write(text)
wechat = Wechat()
wechat.send_markdown(text)
def batch_next_periods_rise_or_fall(
self,
start: str = None,
end: str = None,
next_periods: list = [1, 2, 3, 5, 10],
output_excel: bool = False,
):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
huge_volume_data_list = []
result_data_list = []
window_size_list = WINDOW_SIZE.get("window_sizes", None)
2025-08-01 08:18:36 +00:00
if (
window_size_list is None
or not isinstance(window_size_list, list)
or len(window_size_list) == 0
):
window_size_list = [50, 80, 100, 120]
for symbol in self.market_data_main.symbols:
for bar in self.market_data_main.bars:
for window_size in window_size_list:
huge_volume_data, result_data = self.next_periods_rise_or_fall(
symbol, bar, window_size, start, end, next_periods
)
huge_volume_data_list.append(huge_volume_data)
result_data_list.append(result_data)
total_huge_volume_data = pd.concat(huge_volume_data_list)
total_result_data = pd.concat(result_data_list)
if output_excel:
total_huge_volume_data = total_huge_volume_data.reset_index(drop=True)
total_result_data = total_result_data.reset_index(drop=True)
current_date = datetime.now().strftime("%Y%m%d%H%M%S")
2025-08-01 08:18:36 +00:00
file_name = f"next_periods_rise_or_fall_{current_date}.xlsx"
try:
with pd.ExcelWriter(
os.path.join(self.output_folder, file_name)
) as writer:
2025-08-01 08:18:36 +00:00
total_huge_volume_data.to_excel(
writer, sheet_name="details", index=False
)
total_result_data.to_excel(
writer, sheet_name="next_periods_statistics", index=False
)
except Exception as e:
logging.error(f"导出Excel文件失败: {e}")
return total_huge_volume_data, total_result_data
2025-08-01 08:18:36 +00:00
def plot_huge_volume_data(
self,
data_file_path: str,
sheet_name: str = "next_periods_statistics",
output_folder: str = "./output/huge_volume_statistics/",
):
os.makedirs(output_folder, exist_ok=True)
huge_volume_data = pd.read_excel(data_file_path, sheet_name=sheet_name)
huge_volume_chart = HugeVolumeChart(huge_volume_data)
include_heatmap = True
include_line = False
huge_volume_chart.plot_entrance(
include_heatmap=include_heatmap, include_line=include_line
)
def batch_initial_detect_volume_spike(threshold: float = 2.0):
window_sizes = WINDOW_SIZE.get("window_sizes", None)
2025-08-01 08:18:36 +00:00
if (
window_sizes is None
or not isinstance(window_sizes, list)
or len(window_sizes) == 0
):
window_sizes = [50, 80, 100, 120]
huge_volume_main = HugeVolumeMain(threshold)
2025-08-04 14:36:25 +00:00
start_date = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-15 00:00:00"
2025-08-04 14:36:25 +00:00
)
for window_size in window_sizes:
huge_volume_main.batch_initial_detect_volume_spike(
window_size=window_size,
2025-08-04 14:36:25 +00:00
start=start_date,
)
def batch_update_volume_spike(threshold: float = 2.0):
window_sizes = WINDOW_SIZE.get("window_sizes", None)
2025-08-01 08:18:36 +00:00
if (
window_sizes is None
or not isinstance(window_sizes, list)
or len(window_sizes) == 0
):
window_sizes = [50, 80, 100, 120]
huge_volume_main = HugeVolumeMain(threshold)
for window_size in window_sizes:
huge_volume_main.batch_update_volume_spike(window_size=window_size)
def test_send_huge_volume_data_to_wechat():
huge_volume_main = HugeVolumeMain(threshold=2.0)
# 获得昨天日期
yesterday = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d")
logging.info(f"昨天日期: {yesterday}")
# 获得今天日期
today = datetime.now().strftime("%Y-%m-%d")
logging.info(f"今天日期: {today}")
huge_volume_main.send_huge_volume_data_to_wechat(start=yesterday, end=today)
if __name__ == "__main__":
2025-08-04 14:36:25 +00:00
# test_send_huge_volume_data_to_wechat()
batch_initial_detect_volume_spike(threshold=2.0)
# batch_update_volume_spike(threshold=2.0)
# huge_volume_main = HugeVolumeMain(threshold=2.0)
2025-08-01 08:18:36 +00:00
# huge_volume_main.batch_next_periods_rise_or_fall(output_excel=True)
# data_file_path = "./output/huge_volume_statistics/next_periods_rise_or_fall_stat_20250731200304.xlsx"
# sheet_name = "next_periods_statistics"
# output_folder = "./output/huge_volume_statistics/"
# huge_volume_main.plot_huge_volume_data(
# data_file_path=data_file_path,
# sheet_name=sheet_name,
# output_folder=output_folder,
# )