crypto_quant/huge_volume_main.py

383 lines
15 KiB
Python
Raw Normal View History

from core.huge_volume import HugeVolume
from core.db_market_data import DBMarketData
from core.db_huge_volume_data import DBHugeVolumeData
from core.utils import timestamp_to_datetime
from market_data_main import MarketDataMain
import logging
from config import MONITOR_CONFIG, MYSQL_CONFIG, WINDOW_SIZE
from datetime import datetime
import pandas as pd
import os
import re
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
class HugeVolumeMain:
def __init__(self, threshold: float = 2.0):
mysql_user = MYSQL_CONFIG.get("user", "xch")
mysql_password = MYSQL_CONFIG.get("password", "")
if not mysql_password:
raise ValueError("MySQL password is not set")
mysql_host = MYSQL_CONFIG.get("host", "localhost")
mysql_port = MYSQL_CONFIG.get("port", 3306)
mysql_database = MYSQL_CONFIG.get("database", "okx")
self.db_url = f"mysql+pymysql://{mysql_user}:{mysql_password}@{mysql_host}:{mysql_port}/{mysql_database}"
self.huge_volume = HugeVolume()
self.db_market_data = DBMarketData(self.db_url)
self.db_huge_volume_data = DBHugeVolumeData(self.db_url)
self.market_data_main = MarketDataMain()
self.threshold = threshold
self.output_folder = "./output/huge_volume_statistics/"
os.makedirs(self.output_folder, exist_ok=True)
def batch_initial_detect_volume_spike(self, window_size: int = 50, start: str = None):
for symbol in self.market_data_main.symbols:
for bar in self.market_data_main.bars:
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
data = self.detect_volume_spike(
symbol, bar, window_size, start, only_output_huge_volume=True, is_update=False
)
if data is not None and len(data) > 0:
logging.info(f"此次初始化巨量交易数据: {len(data)}")
else:
logging.info(f"此次初始化巨量交易数据为空")
def detect_volume_spike(
self,
symbol: str = "XCH-USDT",
bar: str = "5m",
window_size: int = 50,
start: str = "2025-05-01 00:00:00",
end: str = None,
only_output_huge_volume: bool = False,
is_update: bool = False,
):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
logging.info(f"开始处理巨量交易数据: {symbol} {bar} 窗口大小: {window_size}{start}{end}")
data = self.db_market_data.query_market_data_by_symbol_bar(
symbol, bar, start, end
)
if data is None:
logging.warning(f"获取行情数据失败: {symbol} {bar} 窗口大小: {window_size}{start}{end}")
return None
else:
if len(data) == 0:
logging.warning(f"获取行情数据为空: {symbol} {bar} 窗口大小: {window_size}{start}{end}")
return None
else:
if isinstance(data, list):
data = pd.DataFrame(data)
elif isinstance(data, dict):
data = pd.DataFrame([data])
data = self.huge_volume.detect_huge_volume(
data=data,
window_size=window_size,
threshold=self.threshold,
check_price=True,
only_output_huge_volume=only_output_huge_volume,
output_excel=True,
)
if data is not None:
if is_update:
for index, row in data.iterrows():
exist_huge_volume_data = (
self.db_huge_volume_data.query_data_by_symbol_bar_window_size_timestamp(
symbol, bar, window_size, row["timestamp"]
)
)
if exist_huge_volume_data is not None:
# remove the exist_huge_volume_data from data
data = data[
data["timestamp"] != exist_huge_volume_data["timestamp"]
]
if data is not None and len(data) > 0:
self.db_huge_volume_data.insert_data_to_mysql(data)
else:
logging.warning(
f"此次处理巨量交易数据为空: {symbol} {bar} {start} {end}"
)
return data
else:
return None
def batch_update_volume_spike(self, window_size: int = 50):
for symbol in self.market_data_main.symbols:
for bar in self.market_data_main.bars:
self.update_volume_spike(symbol, bar, window_size)
def update_volume_spike(self, symbol: str, bar: str, window_size: int = 50):
try:
self.market_data_main.update_data(symbol, bar)
latest_huge_volume_data = self.db_huge_volume_data.query_latest_data(
symbol, bar, window_size
)
if latest_huge_volume_data is None or len(latest_huge_volume_data) == 0:
self.detect_volume_spike(symbol, bar, only_output_huge_volume=True)
return
else:
earliest_date_time = latest_huge_volume_data["date_time"]
earliest_timestamp = latest_huge_volume_data["timestamp"]
seconds = self.get_seconds_by_bar(bar)
earliest_timestamp = earliest_timestamp - (
(window_size - 1) * seconds * 1000
)
earliest_date_time = timestamp_to_datetime(earliest_timestamp)
data = self.detect_volume_spike(
symbol=symbol,
bar=bar,
window_size=window_size,
start=earliest_date_time,
only_output_huge_volume=True,
is_update=True,
)
logging.info(
f"更新巨量交易数据: {symbol} {bar} 窗口大小: {window_size}{earliest_date_time}{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
if data is not None and len(data) > 0:
logging.info(f"此次更新巨量交易数据: {len(data)}")
else:
logging.info(f"此次更新巨量交易数据为空")
except Exception as e:
logging.error(f"更新巨量交易数据失败: {symbol} {bar} 窗口大小: {window_size}{earliest_date_time}{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: {e}")
def get_seconds_by_bar(self, bar: str):
"""
根据bar获取秒数
bar: 1s/1m/3m/5m/15m/30m/1H/2H/4H/6H/12H/1D/2D/3D/1W/1M/3M
:param bar: 时间周期
:return: 秒数
"""
if bar == "1s":
return 1
elif bar == "1m":
return 60
elif bar == "3m":
return 180
elif bar == "5m":
return 300
elif bar == "15m":
return 900
elif bar == "30m":
return 1800
elif bar == "1H":
return 3600
elif bar == "2H":
return 7200
elif bar == "4H":
return 14400
elif bar == "6H":
return 21600
elif bar == "12H":
return 43200
elif bar == "1D":
return 86400
elif bar == "2D":
return 172800
elif bar == "3D":
return 259200
elif bar == "1W":
return 604800
elif bar == "1M":
return 2592000
elif bar == "3M":
return 7776000
else:
raise ValueError(f"不支持的bar: {bar}")
def next_periods_rise_or_fall(
self,
symbol: str,
bar: str,
window_size: int = 50,
start: str = None,
end: str = None,
periods: list = [3, 5],
output_excel: bool = False,
):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
logging.info(f"开始计算巨量出现后之后3或5个周期上涨或下跌的比例: {symbol} {bar} 窗口大小: {window_size}{start}{end}")
huge_volume_data = (
self.db_huge_volume_data.query_huge_volume_data_by_symbol_bar_window_size(
symbol, bar, window_size, start, end
)
)
if huge_volume_data is None or len(huge_volume_data) == 0:
logging.warning(f"获取巨量交易数据为空: {symbol} {bar} 窗口大小: {window_size}{start}{end}")
return None
else:
if isinstance(huge_volume_data, list):
huge_volume_data = pd.DataFrame(huge_volume_data)
elif isinstance(huge_volume_data, dict):
huge_volume_data = pd.DataFrame([huge_volume_data])
market_data = self.db_market_data.query_market_data_by_symbol_bar(
symbol, bar, start, end
)
if market_data is None or len(market_data) == 0:
logging.warning(f"获取行情数据为空: {symbol} {bar} 窗口大小: {window_size}{start}{end}")
return None
else:
if isinstance(market_data, list):
market_data = pd.DataFrame(market_data)
elif isinstance(market_data, dict):
market_data = pd.DataFrame([market_data])
if (
huge_volume_data is not None
and len(huge_volume_data) > 0
and market_data is not None
and len(market_data) > 0
):
# 将huge_volume_data和market_data合并
# market_data移除id列
market_data = market_data.drop(columns=["id"])
# huge_volume_data移除id列
huge_volume_data = huge_volume_data.drop(columns=["id"])
data = pd.merge(market_data, huge_volume_data, on="timestamp", how="left")
# 同名的列只是后缀为_x和_y需要合并
data = data.rename(
columns={
"symbol_x": "symbol",
"bar_x": "bar",
"date_time_x": "date_time",
"open_x": "open",
"high_x": "high",
"low_x": "low",
"close_x": "close",
"volume_x": "volume",
"volCcy_x": "volCcy",
"volCCyQuote_x": "volCCyQuote",
"create_time_x": "create_time",
}
)
data = data.drop(
columns=[
"symbol_y",
"bar_y",
"date_time_y",
"open_y",
"high_y",
"low_y",
"close_y",
"volume_y",
"volCcy_y",
"volCCyQuote_y",
"create_time_y",
]
)
# 根据timestamp排序
data = data.sort_values(by="timestamp", ascending=True)
data["window_size"] = window_size
data = data[
[
"symbol",
"bar",
"window_size",
"timestamp",
"date_time",
"open",
"high",
"low",
"close",
"volume",
"huge_volume",
"volume_ratio",
"volume_price_spike",
"price_high",
"price_low",
]
]
data = data.dropna()
data = data.reset_index(drop=True)
data, result_data = self.huge_volume.next_periods_rise_or_fall(
data=data, window_size=window_size, periods=periods, output_excel=output_excel
)
return data, result_data
def batch_next_periods_rise_or_fall(
self,
window_size: int = 50,
start: str = None,
end: str = None,
periods: list = [3, 5],
output_excel: bool = False,
):
if start is None:
start = MONITOR_CONFIG.get("volume_monitor", {}).get(
"initial_date", "2025-05-01 00:00:00"
)
if end is None:
end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
data_list = []
result_data_list = []
for symbol in self.market_data_main.symbols:
for bar in self.market_data_main.bars:
data, result_data = self.next_periods_rise_or_fall(
symbol, bar, window_size, start, end, periods, output_excel
)
data_list.append(data)
result_data_list.append(result_data)
data = pd.concat(data_list)
result_data = pd.concat(result_data_list)
if output_excel:
data = data.reset_index(drop=True)
result_data = result_data.reset_index(drop=True)
current_date = datetime.now().strftime("%Y%m%d%H%M%S")
file_name = (
f"next_periods_rise_or_fall_{current_date}.xlsx"
)
try:
with pd.ExcelWriter(
os.path.join(self.output_folder, file_name)
) as writer:
data.to_excel(writer, sheet_name="details", index=False)
result_data.to_excel(
writer, sheet_name="next_periods_statistics", index=False
)
except Exception as e:
logging.error(f"导出Excel文件失败: {e}")
return data, result_data
def batch_initial_detect_volume_spike(threshold: float = 2.0):
window_sizes = WINDOW_SIZE.get("window_sizes", None)
if window_sizes is None or not isinstance(window_sizes, list) or len(window_sizes) == 0:
window_sizes = [50, 80, 100, 120]
huge_volume_main = HugeVolumeMain(threshold)
for window_size in window_sizes:
huge_volume_main.batch_initial_detect_volume_spike(
window_size=window_size,
start="2025-05-01 00:00:00",
)
def batch_update_volume_spike(threshold: float = 2.0):
window_sizes = WINDOW_SIZE.get("window_sizes", None)
if window_sizes is None or not isinstance(window_sizes, list) or len(window_sizes) == 0:
window_sizes = [50, 80, 100, 120]
huge_volume_main = HugeVolumeMain(threshold)
for window_size in window_sizes:
huge_volume_main.batch_update_volume_spike(window_size=window_size)
if __name__ == "__main__":
# batch_initial_detect_volume_spike(threshold=2.0)
batch_update_volume_spike(threshold=2.0)