crypto_quant/core/db_huge_volume_data.py

547 lines
20 KiB
Python
Raw Normal View History

import pandas as pd
import logging
from typing import Optional, List, Dict, Any, Union
from core.db_manager import DBData
from core.utils import check_date_time_format, datetime_to_timestamp
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s")
class DBHugeVolumeData:
def __init__(
self,
db_url: str
):
self.db_url = db_url
self.table_name = "crypto_huge_volume"
self.columns = [
"symbol",
"bar",
"window_size",
"timestamp",
"date_time",
"open",
"high",
"low",
"close",
"volume",
"volCcy",
"volCCyQuote",
"volume_ma",
"volume_std",
"volume_threshold",
"huge_volume",
"volume_ratio",
"spike_intensity",
"close_80_percentile",
"close_20_percentile",
"price_80_high",
"price_20_low",
"volume_80_20_price_spike",
"close_90_percentile",
"close_10_percentile",
"price_90_high",
"price_10_low",
"volume_90_10_price_spike",
"create_time",
]
self.db_manager = DBData(db_url, self.table_name, self.columns)
def _process_time_parameter(self, time_param: Optional[Union[str, int]]) -> Optional[int]:
"""
处理时间参数统一转换为时间戳
:param time_param: 时间参数字符串或整数
:return: 时间戳或None
"""
if time_param is None:
return None
if isinstance(time_param, int):
return time_param
if isinstance(time_param, str):
if time_param.isdigit():
return int(time_param)
else:
parsed_time = check_date_time_format(time_param)
if parsed_time is None:
logging.warning(f"日期时间格式错误: {time_param}")
return None
return datetime_to_timestamp(parsed_time)
return None
def _build_query_conditions(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None,
additional_conditions: Optional[List[str]] = None
) -> tuple[List[str], Dict[str, Any]]:
"""
构建查询条件
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:param additional_conditions: 额外的查询条件
:return: (条件列表, 参数字典)
"""
conditions = additional_conditions or []
condition_dict = {}
if symbol:
conditions.append("symbol = :symbol")
condition_dict["symbol"] = symbol
if bar:
conditions.append("bar = :bar")
condition_dict["bar"] = bar
if window_size:
conditions.append("window_size = :window_size")
condition_dict["window_size"] = window_size
# 处理时间参数
start_timestamp = self._process_time_parameter(start)
end_timestamp = self._process_time_parameter(end)
if start_timestamp is not None:
conditions.append("timestamp >= :start")
condition_dict["start"] = start_timestamp
if end_timestamp is not None:
conditions.append("timestamp <= :end")
condition_dict["end"] = end_timestamp
return conditions, condition_dict
def insert_data_to_mysql(self, df: pd.DataFrame) -> None:
"""
将巨量交易数据保存到MySQL的crypto_huge_volume表
速度 最快
内存 中等
适用场景中小数据量<10万条
:param df: 巨量交易数据DataFrame
"""
if df is None or df.empty:
logging.warning("DataFrame为空无需写入数据库。")
return
self.db_manager.insert_data_to_mysql(df)
def insert_data_to_mysql_fast(self, df: pd.DataFrame) -> None:
"""
快速插入巨量交易数据方案2使用executemany批量插入
速度 很快
内存
适用场景中等数据量
:param df: 巨量交易数据DataFrame
"""
if df is None or df.empty:
logging.warning("DataFrame为空无需写入数据库。")
return
self.db_manager.insert_data_to_mysql_fast(df)
def insert_data_to_mysql_chunk(self, df: pd.DataFrame, chunk_size: int = 1000) -> None:
"""
分块插入巨量交易数据方案3适合大数据量
速度 中等
内存 最低
适用场景大数据量>10万条
:param df: 巨量交易数据DataFrame
:param chunk_size: 分块大小
"""
if df is None or df.empty:
logging.warning("DataFrame为空无需写入数据库。")
return
self.db_manager.insert_data_to_mysql_chunk(df, chunk_size)
def insert_data_to_mysql_simple(self, df: pd.DataFrame) -> None:
"""
简单插入巨量交易数据方案4直接使用to_sql忽略重复
速度 最快
内存 中等
注意会抛出重复键错误需要额外处理
"""
if df is None or df.empty:
logging.warning("DataFrame为空无需写入数据库。")
return
self.db_manager.insert_data_to_mysql_simple(df)
def query_latest_data(self, symbol: str, bar: str, window_size: int) -> Optional[Dict[str, Any]]:
"""
查询最新巨量交易数据
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:return: 最新数据记录或None
"""
sql = """
SELECT * FROM crypto_huge_volume
WHERE symbol = :symbol AND bar = :bar AND window_size = :window_size
ORDER BY timestamp DESC
LIMIT 1
"""
condition_dict = {"symbol": symbol, "bar": bar, "window_size": window_size}
return self.db_manager.query_data(sql, condition_dict, return_multi=False)
def query_data_by_symbol_bar_window_size_timestamp(self, symbol: str, bar: str, window_size: int, timestamp: int) -> Optional[Dict[str, Any]]:
"""
根据交易对K线周期, 窗口大小和时间戳查询巨量交易数据
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param timestamp: 时间戳
:return: 数据记录或None
"""
sql = """
SELECT * FROM crypto_huge_volume
WHERE symbol = :symbol AND bar = :bar AND window_size = :window_size AND timestamp = :timestamp
"""
condition_dict = {"symbol": symbol, "bar": bar, "window_size": window_size, "timestamp": timestamp}
return self.db_manager.query_data(sql, condition_dict, return_multi=False)
def query_huge_volume_data_by_symbol_bar_window_size(
self,
symbol: str,
bar: str,
window_size: int,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
根据交易对K线周期和窗口大小查询巨量交易数据
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 数据记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(symbol, bar, window_size, start, end)
where_clause = " AND ".join(conditions) if conditions else "1=1"
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp ASC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_huge_volume_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询巨量交易记录只返回huge_volume=1的记录
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 巨量交易记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["huge_volume = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_volume_80_20_price_spike_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询80/20量价尖峰记录只返回volume_80_20_price_spike=1的记录
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 80/20量价尖峰记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["volume_80_20_price_spike = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_volume_90_10_price_spike_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询90/10量价尖峰记录只返回volume_90_10_price_spike=1的记录
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 90/10量价尖峰记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["volume_90_10_price_spike = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_price_80_high_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询价格达到80%分位数高点的记录只返回price_80_high=1的记录
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 价格80%分位数高点记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["price_80_high = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_price_20_low_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询价格达到20%分位数低点的记录只返回price_20_low=1的记录
:param symbol: 交易对
:param bar: K线周期
:param start: 开始时间
:param end: 结束时间
:return: 价格20%分位数低点记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["price_20_low = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_price_90_high_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询价格达到90%分位数高点的记录只返回price_90_high=1的记录
:param symbol: 交易对
:param bar: K线周期
:param start: 开始时间
:param end: 结束时间
:return: 价格90%分位数高点记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["price_90_high = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def query_price_10_low_records(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[List[Dict[str, Any]]]:
"""
查询价格达到10%分位数低点的记录只返回price_10_low=1的记录
:param symbol: 交易对
:param bar: K线周期
:param start: 开始时间
:param end: 结束时间
:return: 价格10%分位数低点记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, start, end, additional_conditions=["price_10_low = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY timestamp DESC
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def get_statistics_summary(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[Dict[str, Any]]:
"""
获取巨量交易统计摘要
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 统计摘要或None
"""
conditions, condition_dict = self._build_query_conditions(symbol, bar, window_size, start, end)
where_clause = " AND ".join(conditions) if conditions else "1=1"
sql = f"""
SELECT
COUNT(*) as total_records,
SUM(huge_volume) as huge_volume_count,
SUM(volume_80_20_price_spike) as volume_80_20_price_spike_count,
SUM(volume_90_10_price_spike) as volume_90_10_price_spike_count,
SUM(price_80_high) as price_80_high_count,
SUM(price_20_low) as price_20_low_count,
SUM(price_90_high) as price_90_high_count,
SUM(price_10_low) as price_10_low_count,
AVG(volume_ratio) as avg_volume_ratio,
MAX(volume_ratio) as max_volume_ratio,
AVG(spike_intensity) as avg_spike_intensity,
MAX(spike_intensity) as max_spike_intensity
FROM crypto_huge_volume
WHERE {where_clause}
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=False)
def get_top_volume_spikes(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
limit: int = 10
) -> Optional[List[Dict[str, Any]]]:
"""
获取成交量尖峰最高的记录
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param limit: 返回记录数量
:return: 成交量尖峰记录列表或None
"""
conditions, condition_dict = self._build_query_conditions(
symbol, bar, window_size, additional_conditions=["huge_volume = 1"]
)
where_clause = " AND ".join(conditions)
sql = f"""
SELECT * FROM crypto_huge_volume
WHERE {where_clause}
ORDER BY volume_ratio DESC
LIMIT :limit
"""
condition_dict["limit"] = limit
return self.db_manager.query_data(sql, condition_dict, return_multi=True)
def get_percentile_statistics(
self,
symbol: Optional[str] = None,
bar: Optional[str] = None,
window_size: Optional[int] = None,
start: Optional[Union[str, int]] = None,
end: Optional[Union[str, int]] = None
) -> Optional[Dict[str, Any]]:
"""
获取分位数统计信息
:param symbol: 交易对
:param bar: K线周期
:param window_size: 窗口大小
:param start: 开始时间
:param end: 结束时间
:return: 分位数统计信息或None
"""
conditions, condition_dict = self._build_query_conditions(symbol, bar, window_size, start, end)
where_clause = " AND ".join(conditions) if conditions else "1=1"
sql = f"""
SELECT
AVG(close_80_percentile) as avg_close_80_percentile,
AVG(close_20_percentile) as avg_close_20_percentile,
AVG(close_90_percentile) as avg_close_90_percentile,
AVG(close_10_percentile) as avg_close_10_percentile,
MAX(close_80_percentile) as max_close_80_percentile,
MIN(close_20_percentile) as min_close_20_percentile,
MAX(close_90_percentile) as max_close_90_percentile,
MIN(close_10_percentile) as min_close_10_percentile
FROM crypto_huge_volume
WHERE {where_clause}
"""
return self.db_manager.query_data(sql, condition_dict, return_multi=False)