2025-07-26 06:41:50 +00:00
|
|
|
|
from core.db_manager import query_data_by_symbol_bar
|
|
|
|
|
|
from pandas import DataFrame
|
|
|
|
|
|
import logging
|
|
|
|
|
|
import os
|
|
|
|
|
|
import re
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
|
|
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Statistics:
|
|
|
|
|
|
def __init__(self, output_folder: str = "./output"):
|
|
|
|
|
|
self.output_folder = output_folder
|
|
|
|
|
|
os.makedirs(self.output_folder, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
def detect_volume_spike(
|
|
|
|
|
|
self,
|
|
|
|
|
|
data: DataFrame,
|
|
|
|
|
|
threshold: float = 2.0,
|
|
|
|
|
|
window: int = 50,
|
|
|
|
|
|
check_price: bool = False,
|
|
|
|
|
|
only_output_huge_volume: bool = False,
|
|
|
|
|
|
output_excel: bool = False,
|
|
|
|
|
|
):
|
|
|
|
|
|
"""
|
|
|
|
|
|
detect_volume_spike的函数逻辑:
|
|
|
|
|
|
1. 根据window滑动行情数据
|
|
|
|
|
|
2. 每一个window的最新的volume是否高于该window的volume的均值+2倍标准差,如果满足条件,则增加一列:huge_volume,值为1
|
|
|
|
|
|
3. 如果check_price为True,则检查:
|
|
|
|
|
|
a. 每一个window的close是否处于该window的80%分位数及以上
|
|
|
|
|
|
b. 每一个window的close是否处于该window的20%分位数及以上
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
data: 包含成交量数据的DataFrame
|
|
|
|
|
|
threshold: 标准差倍数,默认为2.0(即成交量超过均值+2倍标准差)
|
|
|
|
|
|
window: 计算移动窗口的大小,默认50个周期
|
|
|
|
|
|
check_price: 是否检查价格处于windows内的80%分位数以上,或20%分位数以下,默认False
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
DataFrame: 包含异常检测结果的DataFrame
|
|
|
|
|
|
"""
|
|
|
|
|
|
if data is None or len(data) == 0:
|
|
|
|
|
|
logging.warning("数据为空,无法进行成交量异常检测")
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
if "volume" not in data.columns:
|
|
|
|
|
|
logging.error("数据中缺少volume列")
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
# 按时间戳排序
|
|
|
|
|
|
data = data.sort_values(by="timestamp", ascending=True).copy()
|
|
|
|
|
|
|
|
|
|
|
|
# 计算移动窗口的成交量均值和标准差
|
|
|
|
|
|
data["volume_ma"] = data["volume"].rolling(window=window, min_periods=1).mean()
|
|
|
|
|
|
data["volume_std"] = data["volume"].rolling(window=window, min_periods=1).std()
|
|
|
|
|
|
|
|
|
|
|
|
# 计算成交量阈值(均值 + threshold倍标准差)
|
|
|
|
|
|
data["volume_threshold"] = data["volume_ma"] + threshold * data["volume_std"]
|
|
|
|
|
|
|
|
|
|
|
|
# 判断当前成交量是否超过阈值
|
|
|
|
|
|
data["huge_volume"] = (data["volume"] > data["volume_threshold"]).astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
# 计算成交量比率
|
|
|
|
|
|
data["volume_ratio"] = data["volume"] / data["volume_ma"]
|
|
|
|
|
|
|
|
|
|
|
|
# 计算异常强度
|
|
|
|
|
|
data["spike_intensity"] = data["volume_ratio"] - 1
|
|
|
|
|
|
|
|
|
|
|
|
# 如果check_price为True,检查价格分位数
|
|
|
|
|
|
if check_price:
|
|
|
|
|
|
if "close" not in data.columns:
|
|
|
|
|
|
logging.error("数据中缺少close列,无法进行价格检查")
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
# 计算移动窗口的收盘价分位数
|
|
|
|
|
|
data["close_80_percentile"] = (
|
|
|
|
|
|
data["close"].rolling(window=window, min_periods=1).quantile(0.8)
|
|
|
|
|
|
)
|
|
|
|
|
|
data["close_20_percentile"] = (
|
|
|
|
|
|
data["close"].rolling(window=window, min_periods=1).quantile(0.2)
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 检查收盘价是否在80%分位数及以上或20%分位数及以下
|
|
|
|
|
|
data["price_high"] = (data["close"] >= data["close_80_percentile"]).astype(
|
|
|
|
|
|
int
|
|
|
|
|
|
)
|
|
|
|
|
|
data["price_low"] = (data["close"] <= data["close_20_percentile"]).astype(
|
|
|
|
|
|
int
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 综合判断:成交量异常且价格处于极端位置
|
|
|
|
|
|
data["volume_price_spike"] = (
|
|
|
|
|
|
(data["huge_volume"] == 1)
|
|
|
|
|
|
& ((data["price_high"] == 1) | (data["price_low"] == 1))
|
|
|
|
|
|
).astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
if only_output_huge_volume:
|
|
|
|
|
|
data = data[data["huge_volume"] == 1]
|
|
|
|
|
|
|
|
|
|
|
|
if output_excel:
|
|
|
|
|
|
# 检查数据是否为空
|
|
|
|
|
|
if len(data) == 0:
|
|
|
|
|
|
logging.warning("数据为空,无法导出Excel文件")
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
start_date = data["date_time"].iloc[0]
|
|
|
|
|
|
end_date = data["date_time"].iloc[-1]
|
|
|
|
|
|
# remove punctuation from start_date and end_date
|
|
|
|
|
|
start_date = re.sub(r"[\:\-\s]", "", str(start_date))
|
|
|
|
|
|
end_date = re.sub(r"[\:\-\s]", "", str(end_date))
|
|
|
|
|
|
symbol = data["symbol"].iloc[0]
|
|
|
|
|
|
bar = data["bar"].iloc[0]
|
|
|
|
|
|
file_name = f"volume_spike_{symbol}_{bar}_{start_date}_{end_date}.xlsx"
|
|
|
|
|
|
with pd.ExcelWriter(os.path.join(self.output_folder, file_name)) as writer:
|
|
|
|
|
|
data.to_excel(writer, sheet_name="volume_spike", index=False)
|
|
|
|
|
|
|
|
|
|
|
|
return data
|