crypto_quant/demo.py

306 lines
11 KiB
Python
Raw Permalink Normal View History

2025-07-21 05:05:59 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
比特币量化交易系统 - 演示版本
无需API密钥仅用于演示策略逻辑
"""
import pandas as pd
import numpy as np
import time
from datetime import datetime, timedelta
import random
class BitcoinQuantTraderDemo:
def __init__(self):
"""初始化演示版交易器"""
self.symbol = "BTC-USDT"
self.position_size = 0.001 # 每次交易0.001 BTC
self.current_position = 0 # 当前持仓
self.cash = 10000 # 初始资金USDT
self.trades = [] # 交易记录
def generate_mock_data(self, days=30):
"""生成模拟的BTC价格数据"""
print("生成模拟BTC价格数据...")
# 生成时间序列
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
dates = pd.date_range(start=start_date, end=end_date, freq='5min')
# 生成价格数据模拟真实BTC价格波动
np.random.seed(42) # 固定随机种子,确保结果可重现
# 基础价格
base_price = 118000
prices = []
for i in range(len(dates)):
# 添加随机波动
change = np.random.normal(0, 0.002) # 0.2%的标准差
if i == 0:
price = base_price
else:
price = prices[-1] * (1 + change)
prices.append(price)
# 创建DataFrame
df = pd.DataFrame({
'timestamp': dates,
'open': prices,
'high': [p * (1 + abs(np.random.normal(0, 0.001))) for p in prices],
'low': [p * (1 - abs(np.random.normal(0, 0.001))) for p in prices],
'close': prices,
'volume': [np.random.uniform(100, 1000) for _ in prices]
})
# 确保high >= close >= low
df['high'] = df[['open', 'high', 'close']].max(axis=1)
df['low'] = df[['open', 'low', 'close']].min(axis=1)
print(f"生成了 {len(df)} 条价格数据")
print(f"价格范围: ${df['close'].min():.2f} - ${df['close'].max():.2f}")
return df
def calculate_sma(self, df, period=20):
"""计算简单移动平均线"""
return df['close'].rolling(window=period).mean()
def calculate_rsi(self, df, period=14):
"""计算RSI指标"""
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def place_mock_order(self, side, size, price):
"""模拟下单"""
timestamp = datetime.now()
if side == 'buy':
cost = size * price
if cost <= self.cash:
self.cash -= cost
self.current_position += size
print(f"✅ 买入成功: {size} BTC @ ${price:.2f}")
self.trades.append({
'timestamp': timestamp,
'side': side,
'size': size,
'price': price,
'cost': cost
})
return True
else:
print(f"❌ 买入失败: 资金不足 (需要: ${cost:.2f}, 可用: ${self.cash:.2f})")
return False
else: # sell
if self.current_position >= size:
revenue = size * price
self.cash += revenue
self.current_position -= size
print(f"✅ 卖出成功: {size} BTC @ ${price:.2f}")
self.trades.append({
'timestamp': timestamp,
'side': side,
'size': size,
'price': price,
'revenue': revenue
})
return True
else:
print(f"❌ 卖出失败: 持仓不足 (需要: {size} BTC, 持有: {self.current_position} BTC)")
return False
def simple_moving_average_strategy(self, df):
"""简单移动平均线策略"""
print("\n=== 执行移动平均线策略 ===")
if len(df) < 20:
print("数据不足,无法执行策略")
return
# 计算移动平均线
df['sma_short'] = self.calculate_sma(df, 5) # 短期均线
df['sma_long'] = self.calculate_sma(df, 20) # 长期均线
# 获取最新数据
latest = df.iloc[-1]
prev = df.iloc[-2]
print(f"短期均线: {latest['sma_short']:.2f}")
print(f"长期均线: {latest['sma_long']:.2f}")
print(f"当前价格: {latest['close']:.2f}")
# 策略逻辑:短期均线上穿长期均线买入,下穿卖出
if (latest['sma_short'] > latest['sma_long'] and
prev['sma_short'] <= prev['sma_long']):
print("信号: 买入")
self.place_mock_order('buy', self.position_size, latest['close'])
elif (latest['sma_short'] < latest['sma_long'] and
prev['sma_short'] >= prev['sma_long']):
print("信号: 卖出")
self.place_mock_order('sell', self.position_size, latest['close'])
else:
print("信号: 持仓观望")
def rsi_strategy(self, df):
"""RSI策略"""
print("\n=== 执行RSI策略 ===")
if len(df) < 30:
print("数据不足,无法执行策略")
return
# 计算RSI
df['rsi'] = self.calculate_rsi(df, 14)
# 获取最新RSI值
latest = df.iloc[-1]
latest_rsi = latest['rsi']
print(f"当前RSI: {latest_rsi:.2f}")
print(f"当前价格: {latest['close']:.2f}")
# 策略逻辑RSI < 30 超卖买入RSI > 70 超买卖出
if latest_rsi < 30:
print("信号: RSI超卖买入")
self.place_mock_order('buy', self.position_size, latest['close'])
elif latest_rsi > 70:
print("信号: RSI超买卖出")
self.place_mock_order('sell', self.position_size, latest['close'])
else:
print("信号: RSI正常区间持仓观望")
def grid_trading_strategy(self, df, grid_levels=5, grid_range=0.02):
"""网格交易策略"""
print(f"\n=== 执行网格交易策略 (网格数: {grid_levels}, 范围: {grid_range*100}%) ===")
if len(df) < 10:
print("数据不足,无法执行策略")
return
current_price = df['close'].iloc[-1]
# 计算网格价格
grid_prices = []
for i in range(grid_levels):
price = current_price * (1 + grid_range * (i - grid_levels//2) / grid_levels)
grid_prices.append(price)
print(f"网格价格: {[f'${p:.2f}' for p in grid_prices]}")
print(f"当前价格: ${current_price:.2f}")
# 找到最近的网格
closest_grid = min(grid_prices, key=lambda x: abs(x - current_price))
grid_index = grid_prices.index(closest_grid)
print(f"最近网格: ${closest_grid:.2f}")
# 简单的网格策略:价格下跌到网格线买入,上涨到网格线卖出
if current_price < closest_grid * 0.995: # 价格下跌超过0.5%
print("信号: 价格下跌,网格买入")
self.place_mock_order('buy', self.position_size, current_price)
elif current_price > closest_grid * 1.005: # 价格上涨超过0.5%
print("信号: 价格上涨,网格卖出")
self.place_mock_order('sell', self.position_size, current_price)
else:
print("信号: 价格在网格内,持仓观望")
def show_portfolio_status(self):
"""显示投资组合状态"""
print("\n" + "="*50)
print("📊 投资组合状态")
print("="*50)
print(f"现金余额: ${self.cash:.2f}")
print(f"BTC持仓: {self.current_position:.6f} BTC")
if self.trades:
# 计算总收益
total_cost = sum(t['cost'] for t in self.trades if 'cost' in t)
total_revenue = sum(t['revenue'] for t in self.trades if 'revenue' in t)
net_profit = total_revenue - total_cost
print(f"总交易次数: {len(self.trades)}")
print(f"总投入: ${total_cost:.2f}")
print(f"总收入: ${total_revenue:.2f}")
print(f"净收益: ${net_profit:.2f}")
if total_cost > 0:
roi = (net_profit / total_cost) * 100
print(f"收益率: {roi:.2f}%")
else:
print("暂无交易记录")
print("="*50)
def run_strategy_backtest(self, strategy='sma', days=30):
"""运行策略回测"""
print(f"🚀 开始运行{strategy}策略回测 ({days}天数据)")
# 生成模拟数据
df = self.generate_mock_data(days)
# 重置投资组合
self.cash = 10000
self.current_position = 0
self.trades = []
# 运行策略
if strategy == 'sma':
self.simple_moving_average_strategy(df)
elif strategy == 'rsi':
self.rsi_strategy(df)
elif strategy == 'grid':
self.grid_trading_strategy(df)
else:
print("未知策略")
return
# 显示结果
self.show_portfolio_status()
# 显示交易记录
if self.trades:
print("\n📋 交易记录:")
for i, trade in enumerate(self.trades, 1):
print(f"{i}. {trade['timestamp'].strftime('%Y-%m-%d %H:%M')} "
f"{trade['side'].upper()} {trade['size']} BTC @ ${trade['price']:.2f}")
def main():
"""主函数"""
print("=== 比特币量化交易系统 - 演示版本 ===")
print("⚠️ 此版本使用模拟数据,仅用于演示策略逻辑")
trader = BitcoinQuantTraderDemo()
while True:
print("\n请选择操作:")
print("1. 运行移动平均线策略回测")
print("2. 运行RSI策略回测")
print("3. 运行网格交易策略回测")
print("4. 查看投资组合状态")
print("0. 退出")
choice = input("请输入选择 (0-4): ").strip()
if choice == '0':
print("退出程序")
break
elif choice == '1':
days = int(input("设置回测天数 (默认30): ") or "30")
trader.run_strategy_backtest('sma', days)
elif choice == '2':
days = int(input("设置回测天数 (默认30): ") or "30")
trader.run_strategy_backtest('rsi', days)
elif choice == '3':
days = int(input("设置回测天数 (默认30): ") or "30")
trader.run_strategy_backtest('grid', days)
elif choice == '4':
trader.show_portfolio_status()
else:
print("无效选择,请重新输入")
if __name__ == "__main__":
main()